Violympic toán 9

LN

Cho a,b\(\ge\)0 Chứng minh 3a\(^3+7b^3\ge9ab^2\) . TÌm dấu = xảy ra

AH
22 tháng 2 2018 lúc 22:24

Lời giải:

Áp dụng BDDT AM-GM ta có:

\(a^3+b^3+b^3\geq 3\sqrt[3]{a^3b^6}\)

\(\Rightarrow 3(a^3+2b^3)\geq 9ab^2\)

Vì \(b\geq 0\Rightarrow b^3\geq 0\Rightarrow b^3+3(a^3+2b^3)\ge 3(a^3+2b^3)\geq 9ab^2\)

hay \(3a^3+7b^3\geq 9ab^2\) (đpcm)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} a^3=b^3\\ b^3=0\end{matrix}\right.\Leftrightarrow a=b=0\)

Bình luận (0)

Các câu hỏi tương tự
TZ
Xem chi tiết
PM
Xem chi tiết
ND
Xem chi tiết
PM
Xem chi tiết
PT
Xem chi tiết
PD
Xem chi tiết
TT
Xem chi tiết
TD
Xem chi tiết
H24
Xem chi tiết