Cho các số thực dương a,b,c thỏa mãn abc=1.Chứng minh rằng:
\(\frac{1}{\sqrt{a^4-a^3+ab-2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4+c^3+ac+2}}\le\sqrt{3}\)
Cho a,b,c>0 thỏa mãn abc=1. Chứng minh rằng
\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\sqrt{3}\)
Cho a, b, c là các số dương thỏa mãn a+b+c+2=abc. Chứng minh: \(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\le\frac{3}{2}\)
cho a,b,c>0 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le16\left(a+b+c\right)\). Chứng minh rằng:
\(\frac{1}{\left(a+b+2\sqrt{a+c}\right)^3}+\frac{1}{\left(b+c+2\sqrt{b+a}\right)^3}+\frac{1}{\left(c+a+2\sqrt{b+c}\right)^3}\le\frac{8}{9}\)
1) Cho a,b,c>0 và a+b+c=3
Chứng minh rằng \(\frac{1}{4a^2+b^2+c^2}+\frac{1}{a^2+4b^2+c^2}+\frac{1}{a^2+b^2+4c^2}\le\frac{1}{2}\)
2) Giaỉ phương trình
\(\frac{4}{\sqrt{x-2}}+\frac{1}{\sqrt{y-1}}+\frac{25}{\sqrt{z-5}}=16-\sqrt{x-2}-\sqrt{y-1}-\sqrt{z-5}\)
Cho a, b, c là các số không âm thỏa mãn điều kiện a+b+c=2, chứng minh rằng:\(\frac{\sqrt{a}}{1+a}+\frac{\sqrt{b}}{1+a+b}+\frac{\sqrt{c}}{1+a+b+c}\le\sqrt{2}\)
chứng minh bđt sau với mọi a,b,c ko âm
\(\sqrt[3]{\frac{a}{b}}+\sqrt[3]{\frac{b}{a}}\le\sqrt[3]{2\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)}\)
Cho \(a;b;c\) là các số dương thỏa mãn: \(\sqrt{a}+\sqrt{b}+\sqrt{c}=4\). Chứng minh rằng:
\(\frac{1}{2\sqrt{bc}+\sqrt{ca}+\sqrt{ab}}+\frac{1}{\sqrt{bc}+2\sqrt{ac}+\sqrt{ab}}+\frac{1}{\sqrt{bc}+\sqrt{ac}+2\sqrt{ab}}\le\frac{1}{\sqrt{abc}}\)
Cho a,b,c là các số thực thỏa mãn a + b + c = 3. CMR: \(\frac{1}{{2\sqrt a }} + \frac{1}{{2\sqrt b }} + \frac{1}{{2\sqrt c }} - \frac{3}{4} \le \frac{1}{4}\left( {\frac{1}{a} + \frac{1}{b} + \frac{1}{c}} \right)\)