Ôn tập toán 7

TK

Cho a,b,c,d,e thuộc N thõa mãn \(a^b=b^e=c^d=d^e=e^a\)

CMR: a=b=c=d=e

LF
19 tháng 8 2016 lúc 15:49

Không mất tính tổng quát, giả sử \(a\ge b\)

Vì \(a^b=b^c\Rightarrow b\le c\)

Vì \(b^c=c^d\Rightarrow c\ge d\)

Vì \(c^d=d^e\Rightarrow d\le e\)

Vì \(d^e=e^a\Rightarrow e\ge a\)

Vì \(e^a=a^b\Rightarrow a\le b\)

Suy ra \(a=b\Rightarrow a=b=c=d=e\)

Đpcm

Bình luận (0)
LF
19 tháng 8 2016 lúc 15:56

+Nếu một trong năm số a,b,c,d,e=1 

=>a=b=c=d=e=1

+Không mất tính tổng quát giả sử a>1.Từ ab=bc=>b>1

Tương tự như vậy c,d,e>1. Như vậy tất cả các hàm mũ mà a,b,c,d,e là cơ số thì đều là hàm tăng.

Không mất tính tổng quát giả sử \(a\le b\)

Từ \(a^b=b^c\Rightarrow\frac{a^b}{b^b}=\frac{b^c}{b^b}\Rightarrow\left(\frac{a}{b}\right)^b=b^{c-b}\)

Do \(\frac{a}{b}\le1\Rightarrow b^{c-b}\le1=b^0\Rightarrow c-b\le0\Rightarrow c\le b\)

Tương tự như vậy với các đẳng thức còn lại 

\(\begin{cases}c\le b\\b^c=c^d\end{cases}\)\(\Rightarrow\begin{cases}\frac{b}{c}\ge1\\\left(\frac{b}{c}\right)^c=c^{d-c}\end{cases}\Rightarrow c\le d\)

\(\begin{cases}c\le d\\c^d=d^e\end{cases}\Rightarrow...\Rightarrow e\le d\)

\(\begin{cases}e\le d\\d^e=e^a\end{cases}\Rightarrow...\Rightarrow e\le a\)

\(\begin{cases}e\le a\\e^a=a^b\end{cases}\Rightarrow....\Rightarrow b\le a\)

Kết hợp \(a\le b\) và \(b\le a\) ta có a=b.Tiếp tục như vậy b=c, c=d, d=e

Vậy phải có a=b=c=d=e

 

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
PA
Xem chi tiết
KJ
Xem chi tiết
CT
Xem chi tiết
BT
Xem chi tiết
TN
Xem chi tiết
CG
Xem chi tiết
VK
Xem chi tiết
TH
Xem chi tiết