Chương I - Căn bậc hai. Căn bậc ba

TL

Cho a;b;c;d>0 thỏa mãn: a+b+c+d=4. Tìm min của:

\(\sqrt{a^2+\dfrac{1}{b^2}}+\sqrt{b^2+\dfrac{1}{c^2}}+\sqrt{c^2+\dfrac{1}{d^2}}+\sqrt{d^2+\dfrac{1}{a^2}}\)

MS
28 tháng 5 2018 lúc 11:55

Áp dụng bđt Mincopxki và Cauchy-Schwarz:

\(VT=\sqrt{a^2+\dfrac{1}{b^2}}+\sqrt{b^2+\dfrac{1}{c^2}}+\sqrt{c^2+\dfrac{1}{d^2}}+\sqrt{d^2+\dfrac{1}{a^2}}\)

\(\ge\sqrt{\left(a+b+c+d\right)^2+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)^2}\)

\(\ge\sqrt{\left(a+b+c+d\right)^2+\left(\dfrac{16}{a+b+c+d}\right)^2}\)

\(=\sqrt{3^2+\dfrac{16^2}{3^2}}=\sqrt{\dfrac{337}{9}}\)

\("="\Leftrightarrow a=b=c=d=\dfrac{3}{4}\)

Bình luận (0)
AH
28 tháng 5 2018 lúc 12:04

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(\left(a^2+\frac{1}{b^2}\right)(1+1)\geq (a+\frac{1}{b})^2\)

\(\Rightarrow \sqrt{a^2+\frac{1}{b^2}}\geq \frac{a+\frac{1}{b}}{\sqrt{2}}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế:

\(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{d^2}}+\sqrt{d^2+\frac{1}{a^2}}\geq \frac{1}{\sqrt{2}}(a+b+c+d+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d})\)

Mặt khác theo BĐT Cauchy:

\(a+\frac{1}{a}\geq 2; b+\frac{1}{b}\geq 2; c+\frac{1}{c}\geq 2; d+\frac{1}{d}\geq 2\)

\(\Rightarrow \text{VT}\geq \frac{1}{\sqrt{2}}.8=4\sqrt{2}\)

Vậy giá trị nhỏ nhất của biểu thức là $4\sqrt{2}$. Dấu bằng xảy ra khi $a=b=c=d=1$

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
NT
Xem chi tiết
VC
Xem chi tiết
LM
Xem chi tiết
VT
Xem chi tiết
NQ
Xem chi tiết
PD
Xem chi tiết
QE
Xem chi tiết
NY
Xem chi tiết