Cho đường tròn tâm O, đường kính BC. A thuộc đường tròn tâm O. AH vuông góc BC. Đường tròn đường kính AH cắt AB, AC và cắt đường tròn tâm O tại E, F, K.
a) Chứng minh: AO vuông góc EF.
b) AK cắt BC tại T. Chứng minh: T, E, F thẳng hàng.
Mọi người giúp em với ạ em cần gấp
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Dường cao BE; CF cắt nhau tại H
a) Vẽ hình
b)Vẽ đường kính AK của đường tròn (O).Chứng minh BHCK là hình bình hành suy ra H,I,K thẳng hàng
Cho tam giác ABC nội tiếp (O), đường cao AD, BE, CF, trực tâm H. M là trung điểm BC. Kẻ đường kính AP của (O).
a) Chứng minh: BHCP là hình bình hành.
b) Tia MH cắt (O) tại T, chứng minh: T, A, E, H, F đồng viên (nghĩa là cùng thuộc một đường tròn).
c) Chứng minh: AH=2OM
d) G là trọng tâm tam giác ABC, chứng minh: O, G, H thẳng hàng
Mọi người giúp em với e cần gấp ạ,mà mọi người chủ yếu làm cho em câu B thôi nha vì mấy câu còn lại em biết làm rồi (Câu B nếu dùng tứ giác nội tiếp thì cũng được nhưng mà mọi người làm được cách khác thì tốt nha ).Hình vẽ với gợi ý em để ở dưới ạ
Cho △ABC vuông cân tại B.Điểm I ∈BC, kẻ CE⊥AI.
a)Cho AB=8cm,BI=6cm.Tính AI,BM,AM.
b)Chứng minh 4 điểm A,B,E,C cùng thuộc 1 đường tròn tâm O.
c) Từ C kẻ đường thẳng vuông góc với BC cắt đường tròn tâm O tại D,cắt AI tại F.Chứng minh ABCD là hình vuông.
Bài 1: Cho hình thang cân ABCD (AB//CD;AB⊥CD).Vẽ E đối xứng A qua CD, F đối xứng A qua trung điểm M của CD. Chứng minh A,B,C,D,E,F cùng thuộc một đường tròn.
Bài 2 : Cho hình thoi ABCD , 2 đường chéo cắt nhau tại O. Trên AB,BC lấy các điểm E,F sao cho BE=BF. OE cắt CD tại G, OF cắt AB tại H. Chứng minh E,F,G,H cùng thuộc 1 đường tròn
Mọi người giúp em với ạ, mai e phải nộp rồi :(
Cho tam giác abc nhọn BE,CF là hai đường cao, H là trực tâm. Chứng minh
a) A,E,H,F cùng thuộc đường tròn tâm I
b) B,E,F,C cùng thuộc đường tròn tâm O
c) IE là tiếp tuyến tâm O
d) IO là trung trực EF
e) I,E,K,F cùng thuộc đường tròn và AH giao BC tại K
cảm phiền mọi người giúp mình với ạ!
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn tâm A bán kính AH.
a) Chứng minh BC là tiếp tuyến của đường tròn.
b) Từ B và C vẽ các tiếp tuyến BE, CF với đường tròn (E, F là các tiếp điểm khác H). Chứng minh rằng ba điểm E, A, F thẳng hàng.
c) Tính độ dài đoạn thẳng AH, biết CH = 4cm, HB = 9cm.
Cho tam giác ABC nhọn (AB < AC) , vẽ đường tròn tâm O đường kính BC cắt AB và AC tại D và E, CD cắt BE tại H. a) Chứng minh AH vuông góc BC. b) Chứng minh 4 điểm A, E, H, D cùng thuộc một đường đường tròn, xác định tâm I của đường tròn qua 4 điểm. c) Chứng minh 4 điểm B, C, D, E cùng thuộc 1 đường tròn. Xác định tâm O của đường tròn đi qua 4 điểm d) Chứng minh OI vuông góc với DE
Cho ΔABC nhọn và H là trực tâm. Vẽ hình bình hành BHCD. Đường thẳng đi qua D và song song BC cắt AH tại E.
a/ Gọi O là tâm đường tròn ngoại tiếp ΔABC và M là trung điểm BC, đường thẳng AM cắt OH tại G. CMR: G là trọng tâm của ΔABC
b/ Giả sử OD=a. Hãy tính độ dài đường tròn ngoại tiếp BHC theo a