Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Ôn tập toán 7

CT

Cho a,b,c,d > 0 . Chứng minh rằng:

1 < a/a+b+c + b/b+c+d + c/c+d+a + d/d+a+b < 2

NN
18 tháng 5 2017 lúc 19:43

Nghỉ lâu, giờ vào bài :v

Ta có : a,b,c,d >0

\(\Rightarrow\dfrac{a}{a+b+c}>\dfrac{a}{a+b+c+d}\)

\(\dfrac{b}{b+c+d}>\dfrac{b}{a+b+c+d}\)

\(\dfrac{c}{c+d+a}>\dfrac{c}{c+d+a+b}\)

\(\dfrac{d}{d+a+b}>\dfrac{d}{d+a+b+c}\)

Cộng cả 4 vế , ta được :

\(\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}>\dfrac{a}{a+b+c+d}+\dfrac{b}{a+b+c+d}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}=\dfrac{a+b+c+d}{a+b+c+d}=1\)Vậy \(\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}>1\left(1\right)\)

Ta lại có : \(\dfrac{a}{a+b+c}< \dfrac{a}{a+c}\)

\(\dfrac{b}{b+c+d}< \dfrac{b}{b+d}\)

\(\dfrac{c}{c+d+a}< \dfrac{c}{c+a}\)

\(\dfrac{d}{d+a+b}< \dfrac{d}{d+b}\)

Cộng 4 vế , ta được :

\(\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}< \dfrac{a}{a+c}+\dfrac{b}{b+d}+\dfrac{c}{a+c}+\dfrac{d}{b+d}=\left(\dfrac{a}{a+c}+\dfrac{c}{a+c}\right)+\left(\dfrac{b}{b+d}+\dfrac{d}{b+d}\right)=\left(\dfrac{a+c}{a+c}\right)+\left(\dfrac{b+d}{b+d}\right)=1+1=2\)

Vậy \(\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}< 2\left(2\right)\)

Từ (1) và (2)=> đpcm

Bình luận (0)
TA
2 tháng 12 2016 lúc 20:09

Bạn ơi đây là Tiếng Anh mà chứ đâu phải Toán

Bình luận (2)
TA
2 tháng 12 2016 lúc 20:12

Áp dụng bất đẳng thức , ta có:
VT[a(b+c)+b(c+d)+c(d+a)+d(a+b)]≥(a+b+c+d)2
Ta cần chứng minh:
(a+b+c+d)2≥2(ab+bc+cd+da+2ca+2bd)⇔a2+b2+c2+d2≥2ca+2bd⇔(a−c)2+(b−d)2≥0

 
Bình luận (4)

Các câu hỏi tương tự
TT
Xem chi tiết
CT
Xem chi tiết
TT
Xem chi tiết
NB
Xem chi tiết
NP
Xem chi tiết
DT
Xem chi tiết
HP
Xem chi tiết
HP
Xem chi tiết
VH
Xem chi tiết