Violympic toán 9

DF

cho a,b,c≥1 và ab+bc+ca=9. tìm GTLN và GTNN của P=a2+b2+c2

AH
4 tháng 1 2021 lúc 19:44

Lời giải:

Tìm min:

Theo BĐT AM-GM thì: $P=a^2+b^2+c^2\geq ab+bc+ac$ hay $P\geq 9$

Vậy $P_{\min}=9$. Giá trị này đạt tại $a=b=c=\sqrt{3}$

-----------

Tìm max:

$P=a^2+b^2+c^2=(a+b+c)^2-2(ab+bc+ac)=(a+b+c)^2-18$

Vì $a,b,c\geq 1$ nên:

$(a-1)(b-1)\geq 0\Leftrightarrow ab+1\geq a+b$

Hoàn toàn tương tự: $bc+1\geq b+c; ac+1\geq a+c$

Cộng lại: $2(a+b+c)\leq ab+bc+ac+3=12$

$\Rightarrow a+b+c\leq 6$

$\Rightarrow P=(a+b+c)^2-18\leq 6^2-18=18$

Vậy $P_{\max}=18$. Giá trị này đạt tại $(a,b,c)=(1,1,4)$ và hoán vị

 

 

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
LT
Xem chi tiết
H24
Xem chi tiết
HC
Xem chi tiết
LT
Xem chi tiết
H24
Xem chi tiết
DF
Xem chi tiết
H24
Xem chi tiết
LK
Xem chi tiết