Violympic toán 9

DF

cho a,b,c thỏa mãn a+b+c=0 và a2=2(a+c+1)(a+b-1). tính giá trị A=a2+b2+c2

NV
9 tháng 1 2021 lúc 19:24

Thay \(a=-\left(b+c\right)\) ; \(a+c=-b\) và \(a+b=-c\) vào điều kiện thứ 2 ta có 

\(\left(b+c\right)^2=2\left(-b+1\right)\left(-c-1\right)\)

 <=> \(b^2+c^2+2bc=2bc+2b-2c-2\)

<=> \(\left(b-1\right)^2+\left(c+1\right)^2=0\) <=> \(\left\{{}\begin{matrix}b=1\\c=-1\end{matrix}\right.\)

suy ra: a=0. Vậy A = a2 + b2 + c2 = 2

 

Bình luận (1)

Các câu hỏi tương tự
LK
Xem chi tiết
HC
Xem chi tiết
DT
Xem chi tiết
NM
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
DD
Xem chi tiết
DF
Xem chi tiết