Ôn tập cuối năm phần số học

HT

Cho a+b+c=0 và a,b,c\(\ne0\) . Chứng minh rằng:

A=\(\sqrt{\dfrac{6a^2}{a^2-b^2-c^2}+\dfrac{6b^2}{b^2-c^2-a^2}+\dfrac{6c^2}{c^2-a^2-b^2}}\) là số nguyên

HN
17 tháng 8 2017 lúc 10:25

Ta có:

\(a^2=\left(-b-c\right)^2\)

\(\Leftrightarrow a^2-b^2-c^2=2bc\)

Tương tự ta cũng có

\(\left\{{}\begin{matrix}b^2-c^2-a^2=2ca\\c^2-a^2-b^2=2ab\end{matrix}\right.\)

Thế vô ta được

\(A=\sqrt{\dfrac{3a^2}{bc}+\dfrac{3b^2}{ca}+\dfrac{3c^2}{ab}}\)

\(=\sqrt{\dfrac{3\left(a^3+b^3+c^3\right)}{abc}}\)

\(=\sqrt{3.\dfrac{\left(a^3+b^3+c^3-3abc\right)+3abC}{abc}}\)

\(=\sqrt{3.\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc}{abc}}\)

\(=\sqrt{3.3}=3\)

ĐPCM

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
AH
Xem chi tiết
RC
Xem chi tiết
PH
Xem chi tiết
TK
Xem chi tiết
MP
Xem chi tiết