Ta có:
\(a^2=\left(-b-c\right)^2\)
\(\Leftrightarrow a^2-b^2-c^2=2bc\)
Tương tự ta cũng có
\(\left\{{}\begin{matrix}b^2-c^2-a^2=2ca\\c^2-a^2-b^2=2ab\end{matrix}\right.\)
Thế vô ta được
\(A=\sqrt{\dfrac{3a^2}{bc}+\dfrac{3b^2}{ca}+\dfrac{3c^2}{ab}}\)
\(=\sqrt{\dfrac{3\left(a^3+b^3+c^3\right)}{abc}}\)
\(=\sqrt{3.\dfrac{\left(a^3+b^3+c^3-3abc\right)+3abC}{abc}}\)
\(=\sqrt{3.\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc}{abc}}\)
\(=\sqrt{3.3}=3\)
ĐPCM