Chương I - Căn bậc hai. Căn bậc ba

PK

Cho a, b, c, d > 0 thỏa mãn a + b + c + d = 4.

CMR : \(\frac{a}{1+b^2c}+\frac{b}{1+c^2d}+\frac{c}{1+d^2a}+\frac{d}{1+a^2b}\ge2\)

(Bài này phân tích dưới mẫu nhưng mà đoạn sau lại tương đối khó và mk cx chưa nghĩ ra)

HQ
14 tháng 9 2017 lúc 10:10

Giải:

Áp dụng BĐT AM - GM ta có:

\(\dfrac{a}{1+b^2c}=a-\dfrac{ab^2c}{1+b^2c}\ge a-\dfrac{ab^2c}{2b\sqrt{c}}\) \(=a-\dfrac{ab\sqrt{c}}{2}\)

\(\ge a-\dfrac{b\sqrt{a.ac}}{2}\ge a-\dfrac{b\left(a+ac\right)}{4}\) \(\ge a-\dfrac{1}{4}\left(ab+abc\right)\)

\(\Rightarrow\dfrac{a}{1+b^2c}\ge a-\dfrac{1}{4}\left(ab+abc\right).\) Tượng tự ta cũng có:

\(\dfrac{b}{1+c^2d}\ge b-\dfrac{1}{4}\left(bc+bcd\right);\dfrac{c}{1+d^2a}\ge c-\dfrac{1}{4}\left(cd+cda\right);\dfrac{d}{1+a^2b}\ge d-\dfrac{1}{4}\left(da+dab\right)\)

Cộng theo vế 4 BĐT trên ta được:

\(\dfrac{a}{1+b^2c}+\dfrac{b}{1+c^2d}+\dfrac{c}{1+d^2a}+\dfrac{d}{1+a^2b}\)

\(\ge a+b+c+d-\dfrac{1}{4}\)\(\left(ab+bc+cd+da+abc+bcd+cda+dab\right)\)

Lại áp dụng BĐT AM - GM ta có:

\(ab+bc+cd+da\) \(\le\dfrac{1}{4}\left(a+b+c+d\right)^2=4\)

\(abc+bcd+cda+dab\) \(\le\dfrac{1}{16}\left(a+b+c+d\right)^3=4\)

Do đó:

\(\dfrac{a}{1+b^2c}+\dfrac{b}{1+c^2d}+\dfrac{c}{1+d^2a}+\dfrac{d}{1+a^2b}\)

\(\ge a+b+c+d-2=2\)

Đẳng thức xảy ra \(\Leftrightarrow a=b=c=d=1\)

Bình luận (5)

Các câu hỏi tương tự
TD
Xem chi tiết
DA
Xem chi tiết
TD
Xem chi tiết
TN
Xem chi tiết
AD
Xem chi tiết
HT
Xem chi tiết
NL
Xem chi tiết
DT
Xem chi tiết
LL
Xem chi tiết