Phương trình bậc nhất một ẩn

H24

Cho \(a,b,c>0\). Chứng minh rằng: \(\frac{a\cdot b}{c}+\frac{b\cdot c}{a}+\frac{c\cdot a}{b}\ge a+b+c\)

TP
14 tháng 8 2019 lúc 21:27

Áp dụng bđt Cô-si :

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab\cdot bc}{ca}}=2b\)

Tương tự : \(\frac{bc}{a}+\frac{ca}{b}\ge2c;\frac{ab}{c}+\frac{ca}{b}\ge2a\)

Cộng theo vế 3 bđt :

\(2\cdot\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
LN
Xem chi tiết
TX
Xem chi tiết
CK
Xem chi tiết
KV
Xem chi tiết
TG
Xem chi tiết
QP
Xem chi tiết
H24
Xem chi tiết