Phương trình bậc nhất một ẩn

TX

1) Cho a, b, c \(\ne\) 0 và a \(\ne\)b thỏa mãn a + b + c = 2 và (a2 - bc)(b - abc) = (b2 - ac)(a - abc). Tính S = \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

2) Cho a, b, c > 0. CMR: \(\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\ge\frac{a^2+b^2+c^2}{2}\)

Làm được đến đâu thì làm nhé. Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!!

NL
17 tháng 11 2019 lúc 12:35

1/ \(\Leftrightarrow a^2b-a^3bc-b^2c+ab^2c^2=ab^2-ab^3c-a^2c+a^2bc^2\)

\(\Leftrightarrow ab\left(a-b\right)+c\left(a^2-b^2\right)=abc\left(a^2-bc-b^2+ac\right)\)

\(\Leftrightarrow\left(a-b\right)\left(ab+ac+bc\right)=abc\left[\left(a-b\right)\left(a+b\right)+c\left(a-b\right)\right]\)

\(\Leftrightarrow\left(a-b\right)\left(ab+bc+ca\right)=abc\left(a-b\right)\left(a+b+c\right)\)

\(\Leftrightarrow ab+bc+ca=abc\left(a+b+c\right)\)

\(\Leftrightarrow ab+bc+ca=2abc\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

\(\Rightarrow S=2^2=4\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
17 tháng 11 2019 lúc 12:40

Câu 2:

\(P=\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}=\frac{a^4}{ab+ac}+\frac{b^4}{bc+ab}+\frac{c^4}{ac+bc}\)

\(P\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)

Hoặc có thể dùng AM-GM:

\(\frac{a^3}{b+c}+\frac{1}{4}a\left(b+c\right)\ge a^2\) ; \(\frac{b^3}{c+a}+\frac{1}{4}b\left(c+a\right)\ge b^2\) ; \(\frac{c^3}{a+b}+\frac{1}{4}c\left(a+b\right)\ge c^2\)

Cộng vế với vế:

\(P+\frac{1}{2}\left(ab+bc+ca\right)\ge a^2+b^2+c^2\)

\(\Leftrightarrow P\ge a^2+b^2+c^2-\frac{1}{2}\left(ab+bc+ca\right)\ge\frac{a^2+b^2+c^2}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TX
Xem chi tiết
LN
Xem chi tiết
QP
Xem chi tiết
TP
Xem chi tiết
TG
Xem chi tiết
LD
Xem chi tiết
PL
Xem chi tiết
DH
Xem chi tiết
TG
Xem chi tiết