Hình học lớp 8

AH

Cho ∆ABC vuông tại A ( AB < AC ), vẽ đường cao AH ( H thuộc BC )

a) Chứng minh : ∆ACH ~ ∆BCA, từ đó suy ra AH.BC = AB.AC

b) Gọi K, I lần lượt là trung điểm của HC và AH ( K thuộc HC, I thuộc AH ). Chứng minh : ∆HIK ~ ∆ABC

c) Vẽ HE, HF lần lượt vuông góc AB, AC ( E thuộc AB, F thuộc AC ). Chứng minh : AH3 = AE.AF.BC

d) Cho BA = 3cm, BC = 5cm. Tính độ dài AE

NT
13 tháng 5 2022 lúc 21:50

a: XétΔACH vuông tại H và ΔBCA vuông tại A có

góc C chung

Do đó: ΔACH\(\sim\)ΔBCA

Suy ra: AH/BA=AC/BC

hay \(AH\cdot BC=AB\cdot AC\)

b: Xét ΔHAC có 

I là trung điểm của HA

K là trung điểm của HC

DO đó: IK là đường trung bình

=>IK//AC

=>ΔHIK\(\sim\)ΔHCA

mà ΔHCA\(\sim\)ΔACB

nên ΔHIK\(\sim\)ΔACB

Bình luận (0)

Các câu hỏi tương tự
TD
Xem chi tiết
TA
Xem chi tiết
TT
Xem chi tiết
DL
Xem chi tiết
NL
Xem chi tiết
DL
Xem chi tiết
PT
Xem chi tiết
NH
Xem chi tiết
PT
Xem chi tiết