Violympic toán 8

LH

Cho a,b,c thỏa mãn

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ne0\)\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\)

Chứng minh : a=b=c

NL
2 tháng 1 2019 lúc 20:19

\(\Leftrightarrow a^2\left(\dfrac{1}{a+b}-\dfrac{1}{b+c}\right)+b^2\left(\dfrac{1}{b+c}-\dfrac{1}{c+a}\right)+c^2\left(\dfrac{1}{c+a}-\dfrac{1}{a+b}\right)=0\)

\(\Leftrightarrow\dfrac{a^2\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\dfrac{b^2\left(a-b\right)}{\left(a+c\right)\left(b+c\right)}+\dfrac{c^2\left(b-c\right)}{\left(a+b\right)\left(a+c\right)}=0\)

\(\Leftrightarrow a^2\left(c-a\right)\left(c+a\right)+b^2\left(a-b\right)\left(a+b\right)+c^2\left(b-c\right)\left(b+c\right)=0\)

\(\Leftrightarrow a^2\left(c^2-a^2\right)+b^2\left(a^2-b^2\right)+c^2\left(b^2-c^2\right)=0\)

\(\Leftrightarrow a^2c^2+a^2b^2+b^2c^2-a^4-b^4-c^4=0\)

\(\Leftrightarrow2a^4+2b^4+2c^4-2a^2b^2-2a^2c^2-2b^2c^2=0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(a^2-c^2\right)^2+\left(b^2-c^2\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}a^2-b^2=0\\a^2-c^2=0\\b^2-c^2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)\left(a+b\right)=0\\\left(a-c\right)\left(a+c\right)=0\\\left(b-c\right)\left(b+c\right)=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\) (do \(\left(a+b\right)\left(a+c\right)\left(b+c\right)\ne0\) \(\Rightarrow\left\{{}\begin{matrix}a+b\ne0\\a+c\ne0\\b+c\ne0\end{matrix}\right.\))

\(\Rightarrow a=b=c\)

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
KH
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
T8
Xem chi tiết
DF
Xem chi tiết
MS
Xem chi tiết