Chương II : Tam giác

VH

Cho △ABC. M là trung điểm của AC. Trên tia đối của tia MB lấy D sao cho\(MD=MB\). Vẽ \(CE\perp AD\) tại E. Gọi F là điểm trên cạnh BC sao cho BF = DE. Chứng minh rằng:
a) \(\Delta ABC=\Delta CDA\)

b) \(AF\perp BC\)

c) M, E, F thẳng hàng

ND
27 tháng 12 2017 lúc 15:09

A B C D E F M

a.

Xét \(\Delta AMB\)\(\Delta CMD\) có :

\(MA=MC\left(gt\right)\\ \widehat{AMB}=\widehat{DMC}\left(đ^2\right)\\ MB=MD\left(gt\right)\\ \Rightarrow\Delta AMB=\Delta DMC\left(c-g-c\right)\\ \Rightarrow AB=CD;\widehat{BAC}=\widehat{DCA}\)

Xét \(\Delta ABC\)\(\Delta DCA\) có :

\(AB=CD\left(cmt\right)\\ \widehat{BAC}=\widehat{DCA}\left(cmt\right)\\ AC\left(chung\right)\\ \Rightarrow\Delta ABC=\Delta CDA\left(c-g-c\right)\)

b.

Xét \(\Delta AFB\)\(\Delta CED\) có :

\(AB=CD\left(cmt\right)\\ BF=DE\left(gt\right)\\ \Rightarrow\Delta ABF=\Delta CDE\left(ch-cgv\right)\\ \Rightarrow\widehat{AFB}=\widehat{CED}=90^0\\ \Rightarrow AF\perp BC\)

c.

Xét \(\Delta BMF;\Delta DME\) có :

\(MB=MD\left(gt\right)\\ \widehat{MBF}=\widehat{MDE}\\ BF=DE\left(gt\right)\\ \Rightarrow\Delta BMF=\Delta DME\left(c-g-c\right)\\ \Rightarrow\widehat{BMF}=\widehat{DME}\\ \Rightarrow\widehat{DME}+\widehat{DMF}=\widehat{BMF}+\widehat{DMF}\\ \Rightarrow\widehat{MEF}=180^0\)

=> M;E;F thẳng hàng

Bình luận (0)

Các câu hỏi tương tự
TB
Xem chi tiết
MC
Xem chi tiết
BN
Xem chi tiết
BN
Xem chi tiết
H24
Xem chi tiết
TL
Xem chi tiết
DO
Xem chi tiết
DN
Xem chi tiết
NK
Xem chi tiết