Chương II : Tam giác

TB

Cho \(\Delta\)ABC, lấy điểm D thuộc cạnh BC (D ko trùng với B, C). Gọi M là trung điểm của AD . Trên tia đối của tia MB lấy E sao cho MB=ME, trên tia đối của tia MC lấy điểm F sao cho MF = MC . CMR:

a) \(\Delta\) AME = \(\Delta\) DMB 

b) Ba điểm E , A, F thẳng hàng 

c) BF // CE

H24
19 tháng 12 2020 lúc 19:19

CM: a) Xét tam giác AME và tam giác DMB

có ME = MB (gt)

 góc AME = góc BMD (đối đỉnh)

MA = MD (gt)

=> tam giác AME = tam giác DMB (c.g.c)

=> góc E = góc MBD (hai góc tương ứng)

Mà góc E và góc MBD ở vị trí so le trong

=> AE // BC (1)

b) Xét tam giác AEM và tam giác DCM 

có MA = MD(gt)

  góc EMA = góc DMC (đối đỉnh)

ME = MC (gt)

=> tam giác AEM = tam giác DCM (c.g.c)

=> góc F = góc MCD (hai góc tương ứng)

Mà góc F và góc MCD ở vị trí so le trong 

=> AF // BC (2)

Từ (1) và (2) suy ra AF \equiv≡AE ( theo tiên đề ơ - clit)

=> F,A,E thẳng hàng

c) Xét tam giác FMB và tam giác CME

có MF = MC (gt)

góc FMB = góc EMC (đối đỉnh)

 BM = EM (gt)

=> tam giác FMB = tam giác CME (c.g.c)

=> góc BFM = góc MCE (hai góc tương ứng)

mà góc BFM và góc MCE ở vị trí so le trong

=> BF // CE

Bình luận (0)

Các câu hỏi tương tự
BN
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
09
Xem chi tiết
VH
Xem chi tiết
DO
Xem chi tiết
VT
Xem chi tiết
H24
Xem chi tiết
YM
Xem chi tiết