Chương I - Căn bậc hai. Căn bậc ba

H24

câu 1: Cho a,b,c là các số không âm thỏa a+b+c=3.chứng minh

\(\dfrac{a^2}{a+b^2}+\dfrac{b^2}{b+c^2}+\dfrac{c^2}{c+a^2}\ge\dfrac{3}{2}\)

câu 2: cho a,b,c là 3 cạnh của 1 tam giác . chứng minh

\(\dfrac{a}{\sqrt{2b^2+2c^2-a^2}}+\dfrac{b}{\sqrt{2a^2+2c^2-b^2}}+\dfrac{c}{\sqrt{2a^2+2b^2-c^2}}\ge\sqrt{3}\)

câu 3:tìm tất cả nghiệm nguyên dương của phương trình

xyz+xy+yz+xz+x+y+z=2015 thỏa \(x\ge y\ge z\ge8\)

LF
6 tháng 5 2017 lúc 20:48

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(a-\dfrac{a^2}{a+b^2}=\dfrac{ab^2}{a+b^2}\le\dfrac{ab^2}{2b\sqrt{a}}=\dfrac{b\sqrt{a}}{2}\)

Tương tự cho các BĐT còn lại cũng có:

\(b-\dfrac{b^2}{b+c^2}\le\dfrac{c\sqrt{b}}{2};c-\dfrac{c^2}{c+a^2}\le\dfrac{a\sqrt{c}}{2}\)

Sau đó cộng theo vế các BĐT trên

\(\dfrac{a^2}{a+b^2}+\dfrac{b^2}{b+c^2}+\dfrac{c^2}{c+a^2}\ge3-\dfrac{1}{2}\left(b\sqrt{a}+c\sqrt{b}+a\sqrt{c}\right)\)

\(\ge3-\dfrac{1}{2}\sqrt{\left(a+b+c\right)\left(ab+bc+ca\right)}\)

\(\ge3-\dfrac{1}{2}\sqrt{\left(a+b+c\right)\cdot\dfrac{\left(a+b+c\right)^2}{3}}=3-\dfrac{3}{2}=\dfrac{3}{2}\)

Đẳng thức xảy ra khi \(a=b=c=1\)

Bài 2:

Áp dụng BĐT AM-GM ta có:

\(\dfrac{a}{\sqrt{2b^2+2c^2-a^2}}=\dfrac{\sqrt{3}a^2}{\sqrt{3a^2\left(2b^2+2c^2-a^2\right)}}\)

\(\ge\dfrac{\sqrt{3}a^2}{\dfrac{3a^2+2b^2+2c^2-a^2}{2}}=\dfrac{\sqrt{3}a^2}{a^2+b^2+c^2}\)

Tương tự cho các BĐT còn lại ta có:

\(\dfrac{b}{\sqrt{2a^2+2c^2-b^2}}\ge\dfrac{\sqrt{3}b^2}{a^2+b^2+c^2};\dfrac{c}{\sqrt{2a^2+2b^2-c^2}}\ge\dfrac{\sqrt{3}c^2}{a^2+b^2+c^2}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\dfrac{\sqrt{3}\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=\sqrt{3}=VP\)

Đẳng thức xảy ra khi \(a=b=c\)

Bình luận (1)
LF
6 tháng 5 2017 lúc 18:32

2 bài đầu bt làm r` để tẹo nữa làm ha~ :D

Bình luận (1)

Các câu hỏi tương tự
KA
Xem chi tiết
KA
Xem chi tiết
NT
Xem chi tiết
TG
Xem chi tiết
MR
Xem chi tiết
PK
Xem chi tiết
H24
Xem chi tiết
Xem chi tiết
TN
Xem chi tiết