Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

TN

Cho a,b,c là các số thực không âm thỏa mãn điều kiện a+b+c=1. Tìm GTLN của biểu thức P=(a+2b+3c)(6a+3b+2c)

2) Cho a,b,c là các số thực không âm có tổng bằng 3. Tìm GTLN của biểu thức P=(5a+b)(b2+4ac)

@TFBoys @Unruly Kid

UK
12 tháng 8 2017 lúc 16:36

1) \(P=\left(a+2b+3c\right)\left(6a+3b+2c\right)\)

\(P=\left[a+2b+3\left(1-a-b\right)\right]+\left[6a+3b+2\left(1-a-b\right)\right]=\left(3-2a-b\right)\left(2+4a+b\right)=2\left(3a-2b-b\right)\left(1+2a+\dfrac{b}{2}\right)\)

Lợi dụng AM-GM, ta có:

\(P\le2\left(\dfrac{3-2a-b+1+2a+\dfrac{b}{2}}{2}\right)^2=2.\left(\dfrac{4-\dfrac{b}{2}}{2}\right)^2=8\)

MaxP=8 khi \(a=c=\dfrac{1}{2};b=0\)

Bình luận (0)
UK
13 tháng 8 2017 lúc 6:13

2) Sử dụng AM-GM tìm được Max=80 khi b=0;a=2c=2

Bình luận (0)

Các câu hỏi tương tự
KR
Xem chi tiết
KR
Xem chi tiết
NA
Xem chi tiết
KR
Xem chi tiết
TN
Xem chi tiết
KR
Xem chi tiết
NH
Xem chi tiết
HT
Xem chi tiết
ND
Xem chi tiết