Violympic toán 8

LN

Cho a,b,c là các số thực dương thỏa mãn:a+b+c=\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\).CMR:(b+c-a)(c+a-b)(a+b-c)≤1

NL
19 tháng 6 2019 lúc 11:48

Do biểu thức đề bài và BĐT đều mang tính đối xứng, không mất tính tổng quát giả sử \(a\ge b\ge c\)

Đặt \(\left(x;y;z\right)=\left(b+c-a;c+a-b;a+b-c\right)\) \(\Rightarrow\left\{{}\begin{matrix}y>0\\z>0\end{matrix}\right.\)

Ta cần chứng minh \(xyz\le1\)

Nếu \(x\le0\) thì \(xyz\le0\Rightarrow xyz< 1\) BĐT hiển nhiên đúng

Nếu \(x>0\)

\(\Rightarrow\left\{{}\begin{matrix}a=\frac{y+z}{2}\\b=\frac{x+z}{2}\\c=\frac{x+y}{2}\end{matrix}\right.\) \(\Rightarrow x+y+z=\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}\)

\(\Rightarrow x+y+z\le\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\)

\(\Leftrightarrow\sqrt{xyz}\left(x+y+z\right)\le\sqrt{x}+\sqrt{y}+\sqrt{z}\)

\(\Leftrightarrow xyz\left(x+y+z\right)^2\le\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\le3\left(x+y+z\right)\)

\(\Leftrightarrow xyz\left(x+y+z\right)\le3\)

\(\Leftrightarrow xyz.3\sqrt[3]{xyz}\le xyz\left(x+y+z\right)\le3\)

\(\Leftrightarrow xyz\sqrt[3]{xyz}\le1\Leftrightarrow xyz\le1\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)

Bình luận (1)

Các câu hỏi tương tự
LN
Xem chi tiết
LN
Xem chi tiết
LN
Xem chi tiết
LN
Xem chi tiết
LN
Xem chi tiết
LN
Xem chi tiết
LN
Xem chi tiết
SK
Xem chi tiết
LN
Xem chi tiết