Violympic toán 9

H24

cho a,b,c là các số dương thỏa mãn \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2019}\)

CMr: \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\sqrt{\frac{2019}{8}}\)

NL
18 tháng 2 2020 lúc 21:31

\(VT=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{a^2}{b+c}\ge\frac{a^2}{\sqrt{2\left(b^2+c^2\right)}}+\frac{b^2}{\sqrt{2\left(c^2+a^2\right)}}+\frac{c^2}{\sqrt{2\left(c^2+a^2\right)}}\)

Đặt \(\left(\sqrt{b^2+c^2};\sqrt{c^2+a^2};\sqrt{a^2+b^2}\right)=\left(x;y;z\right)\)

\(\Rightarrow\left\{{}\begin{matrix}a^2=\frac{y^2+z^2-x^2}{2}\\b^2=\frac{x^2+z^2-y^2}{2}\\c^2=\frac{x^2+y^2-z^2}{2}\\x+y+z=\sqrt{2019}\end{matrix}\right.\) \(\Rightarrow VT\ge\frac{1}{\sqrt{8}}\left(\frac{y^2+z^2-x^2}{x}+\frac{x^2+z^2-y^2}{y}+\frac{x^2+y^2-z^2}{z}\right)\)

\(VT\ge\frac{1}{\sqrt{8}}\left(\frac{\left(y+z\right)^2}{2x}+\frac{\left(x+z\right)^2}{2y}+\frac{\left(x+y\right)^2}{2z}-\left(x+y+z\right)\right)\)

\(VT\ge\frac{1}{\sqrt{8}}\left[\frac{\left(2x+2y+2z\right)^2}{2\left(x+y+z\right)}-\left(x+y+z\right)\right]=\frac{x+y+z}{\sqrt{8}}=\sqrt{\frac{2019}{8}}\)

Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c=\) nhiêu đó

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
EC
Xem chi tiết
VP
Xem chi tiết
H24
Xem chi tiết
NO
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
VH
Xem chi tiết
NH
Xem chi tiết
NT
Xem chi tiết