Violympic toán 9

VT

Cho a,b,c là các số dương thõa \(a+b+c=1.CM\)

\(\dfrac{3}{ab+bc+ca}+\dfrac{1}{a^2+b^2+c^2}\ge12\)

Cho a,b là các số thực dương thỏa \(a+b=1.CM\)

\(\dfrac{1}{ab}+\dfrac{3}{a^2+b^2+ab}\ge8\)

UK
22 tháng 11 2017 lúc 20:15

1) Áp dụng BĐT Cauchy-Schwarz, ta có:

\(VT=\dfrac{9}{3\left(ab+bc+ca\right)}+\dfrac{1}{a^2+b^2+c^2}\ge\dfrac{16}{\left(a+b+c\right)^2+ab+bc+ca}=\dfrac{16}{1+ab+bc+ca}\ge\dfrac{16}{1+\dfrac{\left(a+b+c\right)^2}{3}}=\dfrac{16}{1+\dfrac{1}{3}}=12\)

Lưu ý: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

Đẳng thức xảy ra khi a=b=c=1/3

Bình luận (0)
UK
23 tháng 11 2017 lúc 14:38

Post lại :v

1) Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT=\dfrac{1}{ab+bc+ca}+\dfrac{4}{2\left(ab+bc+ca\right)}+\dfrac{1}{a^2+b^2+c^2}\)

\(VT\ge\dfrac{3}{\left(a+b+c\right)^2}+\dfrac{\left(2+1\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}\)

\(VT\ge3+\dfrac{9}{\left(a+b+c\right)^2}=3+9=12\)(đpcm)

Đảng thức xảy ra khi \(a=b=c=\dfrac{1}{3}\)

2) Áp dụng BĐT Cauchy-Schwarz, ta có:

\(VT=\dfrac{\dfrac{2}{3}}{ab}+\dfrac{\dfrac{1}{3}}{ab}+\dfrac{3}{a^2+b^2+ab}\)

\(VT\ge\dfrac{\dfrac{2}{3}}{\dfrac{\left(a+b\right)^2}{4}}+\dfrac{\left(\dfrac{1}{\sqrt{3}}+\sqrt{3}\right)^2}{a^2+b^2+ab+ab}\)

\(VT\ge\dfrac{\dfrac{2}{3}}{\dfrac{1}{4}}+\dfrac{\dfrac{16}{3}}{\left(a+b\right)^2}=\dfrac{8}{3}+\dfrac{16}{3}=\dfrac{24}{3}=8\)(đpcm)

Đẳng thức xảy ra khi \(a=b=\dfrac{1}{2}\)

Bình luận (0)

Các câu hỏi tương tự
MD
Xem chi tiết
PP
Xem chi tiết
PP
Xem chi tiết
BB
Xem chi tiết
AG
Xem chi tiết
DF
Xem chi tiết
BB
Xem chi tiết
ST
Xem chi tiết
H24
Xem chi tiết