\(\dfrac{a}{a+\left(a+b+c\right)}\le\dfrac{a}{16}\left(\dfrac{1}{a}+\dfrac{3^2}{a+b+c}\right)\)
Tương tự và cộng lại là được
\(\dfrac{a}{a+\left(a+b+c\right)}\le\dfrac{a}{16}\left(\dfrac{1}{a}+\dfrac{3^2}{a+b+c}\right)\)
Tương tự và cộng lại là được
Cho a,b,c là các số thực dương. Chứng minh rằng:
\(\dfrac{1}{a+2b+c}+\dfrac{1}{b+2c+a}+\dfrac{1}{c+2a+b}\le\dfrac{1}{a+3b}+\dfrac{1}{b+3c}+\dfrac{1}{c+3a}\)
Cminh với a,b,c dương
\(\dfrac{2a}{b+c}\)+\(\dfrac{2b}{a+c}\)+\(\dfrac{2c}{a+b}\)+\(\dfrac{ab+bc+ca}{a^2+b^2+c^2}\) ≥ 4
Cho ba số thực dương a,b,c thỏa mãn abc = 1
Chứng minh rằng : \(\dfrac{1}{a^2+2b^2+3}+\dfrac{1}{b^2+2c^2+3}+\dfrac{1}{c^2+2a^2+3}\) ≤ \(\dfrac{1}{2}\)
cho các số thực a,b,c không âm .Chứng minh:
\(\dfrac{4a}{a+b}+\dfrac{4b}{b+c}+\dfrac{4c}{c+a}+\dfrac{ab^2+bc^2+ca^2+abc}{a^2b+b^2c+c^2a+abc}\ge7\)
giúp với :(((
Cho a,b,c là ba số dương thỏa mãn a + b + c =6 Tìm giá trị lớn nhất của
biểu thức: A = \(\dfrac{ab}{a+3b+2c}\)+\(\dfrac{bc}{b+3c+2a}\)+\(\dfrac{ca}{c+3a+2b}\)
cho a,b,c là các số dương thay đổi thỏa mãn:
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=2017\)
Tìm GTLN của P biết : \(P=\dfrac{1}{2a+3b+3c}+\dfrac{1}{3a+2b+3c}+\dfrac{1}{3a+3b+2c}\)
Cho a,b,c > 0 và \(a^2+b^2+c^2+abc\ge4\)
CMR: \(\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}\ge\dfrac{a}{\sqrt{2-a}}+\dfrac{b}{\sqrt{2-b}}+\dfrac{c}{\sqrt{2-c}}\)
Tìm giá trị nhỏ nhất của biểu thức:
a,A=\(\dfrac{x+1}{\sqrt{x}-2}\) với x>4
b,B=\(\dfrac{bc}{a^2b+a^2c}+\dfrac{ac}{b^2a+b^2c}+\dfrac{ab}{c^2a+c^2b}\) với a,b,c>0 và abc=1
Cho ba số thực dương a,b,c . Chứng minh : \(\dfrac{2+6a+3b+6\sqrt{2bc}}{2a+b+2\sqrt{2bc}}\) ≥ \(\dfrac{16}{\sqrt{2b^2+2\left(a+c\right)^2}+3}\)