Ôn tập: Phân thức đại số

H24

Cho a,b,c đôi một khác nhau và a+b+c=0. Tính

P= \(\dfrac{ab^{2}}{a^{2}+b^{2}-c^{2}}\)+\(\dfrac{bc^{2}}{b^{2}+c^{2}-a^{2}}\)+\(\dfrac{ca^{2}}{c^{2}+a^{2}-b^{2}}\)

 

NT
19 tháng 12 2020 lúc 22:53

Ta có: a+b+c=0

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)

Ta có: \(P=\dfrac{ab^2}{a^2+b^2-c^2}+\dfrac{bc^2}{b^2+c^2-a^2}+\dfrac{ca^2}{c^2+a^2-b^2}\)

\(=\dfrac{ab^2}{\left(a+b\right)^2-c^2-2ab}+\dfrac{bc^2}{\left(b+c\right)^2-a^2-2bc}+\dfrac{ca^2}{\left(c+a\right)^2-b^2-2ac}\)

\(=\dfrac{ab^2}{\left(a+b+c\right)\left(a+b-c\right)-2ab}+\dfrac{bc^2}{\left(b+c+a\right)\left(b+c-a\right)-2bc}+\dfrac{ca^2}{\left(c+a+b\right)\left(c+a-b\right)-2ac}\)

\(=\dfrac{ab^2}{-2ab}+\dfrac{bc^2}{-2bc}+\dfrac{ca^2}{-2ac}\)

\(=\dfrac{-ab\cdot b}{2ab}+\dfrac{-bc^2}{2bc}+\dfrac{-ca^2}{2ac}\)

\(=\dfrac{-b}{2}+\dfrac{-c}{2}+\dfrac{-a}{2}=\dfrac{-\left(a+b+c\right)}{2}=\dfrac{0}{2}=0\)

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
BA
Xem chi tiết
LT
Xem chi tiết
TP
Xem chi tiết
LY
Xem chi tiết
DV
Xem chi tiết
SK
Xem chi tiết
NH
Xem chi tiết
MH
Xem chi tiết