Cho ABC có AB < AC. Gọi M là trung điểm của BC, trên tia AM lấy điểm D sao cho
M là trung điểm của AD.
a) Chứng minh = MAB MDC
b) Chứng minh AB // CD và so sánh hai góc MAB và MAC
c) Kẻ AH BC ⊥ tại H, DK BC ⊥ tại K. Chứng minh AH = DK.
d) Chứng minh AD > 2.DK
e*) Trên đoạn thẳng AM lấy điểm G sao cho AG =2.GM Tia BG cắt AC tại N, tia CG cắt
AB tại P. Chứng minh AM+BN+CP>3/4(AB+AC+BC)
a: Xét ΔMAB và ΔMDC có
MA=MD
góc AMB=góc DMC
MB=MC
=>ΔMAB=ΔMDC
b: ΔMAB=ΔMDC
=>góc MAB=góc MDC
=>AB//CD
c: Xét ΔAHB vuông tại H và ΔDKC vuông tại K có
AB=DC
góc ABH=góc DCK
=>ΔAHB=ΔDKC
=>AH=DK