Vì thấy chủ để là tam giác đồng dạng nên mình sửa lại đề nhé: ∆A'B'C'~∆ABC
Giải:
Vì theo đề bài: ∆A'B'C~∆ABC
\(\Rightarrow\dfrac{A'B'}{AB}=\dfrac{B'C'}{BC}=\dfrac{C'A'}{CA}\)
\(\Leftrightarrow\dfrac{A'B'}{6}+\dfrac{B'C'}{12}+\dfrac{A'C'}{9}=\dfrac{A'B'+B'C'+C'A'}{6+12+9}\)
Mà chu vi ∆A'B'C =18 cm
=> A'B'+B'C'+C'A'=18
=> \(\dfrac{A'B'}{6}+\dfrac{B'C'}{12}=\dfrac{A'C'}{9}=\dfrac{A'B'+B'C'+C'A'}{6+9+12}=\dfrac{18}{27}=\dfrac{2}{3}\)
=> \(\dfrac{A'B'}{6}=\dfrac{2}{3}\Rightarrow A'B'=\dfrac{2.6}{3}=4\left(cm\right)\)
\(\dfrac{B'C'}{12}=\dfrac{2}{3}\Rightarrow B'C'=\dfrac{2.12}{3}=8\left(cm\right)\)
\(\dfrac{A'C'}{9}=\dfrac{2}{3}\Rightarrow A'C'=\dfrac{2.9}{3}=6\left(cm\right)\)
Vậy A'C'=4cm, A'C'=6cm, B'C'=8cm