Phản ví dụ: \(a=b=c=1\Rightarrow8\ge27\)
Phản ví dụ: \(a=b=c=1\Rightarrow8\ge27\)
Cho a, b, c > 0. Chứng minh: \(\left(a+\dfrac{1}{b}-1\right)\left(b+\dfrac{1}{c}-1\right)+\left(b+\dfrac{1}{c}-1\right)\left(c+\dfrac{1}{a}-1\right)+\left(c+\dfrac{1}{a}-1\right)\left(a+\dfrac{1}{b}-1\right)\ge3\)
Cho các số dương a, b, c thỏa mãn ab+bc+ca=1.
CMR: \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge3+\sqrt{\frac{\left(a+b\right)\left(a+c\right)}{a^2}}+\sqrt{\frac{\left(b+c\right)\left(b+a\right)}{b^2}}+\sqrt{\frac{\left(c+a\right)\left(c+b\right)}{c^2}}\)
Cho x, y, z là các số thực bất kì. Chứng minh rằng:
a) \(\left(x^2+1\right)\left(y^2+1\right)\left(z^2+1\right)\ge\left(xy+yz+zx-1\right)^2\)
b) \(\left(x^2+2\right)\left(y^2+2\right)\left(z^2+2\right)\ge3\left(x+y+z\right)^2\)
c) \(\left(x^3+3\right)\left(y^3+3\right)\left(z^3+3\right)\ge4\left(x+y+z+1\right)^2\)
Cho a,b,c>0 thỏa mãn : \(ab+bc+ca=0\)
C/m: \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge3+\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)}{a^2}}+\sqrt{\dfrac{\left(b+c\right)\left(b+a\right)}{b^2}}+\sqrt{\dfrac{\left(c+a\right)\left(c+b\right)}{c^2}}\)
cho \(a,b,c>\frac{1}{2}\) và thỏa mãn \(a+b+c=3\).Chứng minh rằng
\(\frac{a^2}{\sqrt{5-2\left(b+c\right)}}+\frac{b^2}{\sqrt{5-2\left(a+c\right)}}+\frac{c^2}{\sqrt{5-2\left(a+b\right)}}\ge3\)
Cho các số dương a,b,c thỏa mãn \(\left\{{}\begin{matrix}a+b+c=2\\a^2+b^2+c^2=2\end{matrix}\right.\)
Chứng minh rằng: \(a\sqrt{\dfrac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}+b\sqrt{\dfrac{\left(1+a^2\right)\left(1+c^2\right)}{1+b^2}}+c\sqrt{\dfrac{\left(1+a^2\right)\left(1+b^2\right)}{1+c^2}}=2\)
Cho các số thực dương a, b, c thỏa mãn abc=1. Chứng minh rằng:
\(\frac{1}{\left(1+a\right)^2}+\frac{1}{\left(1+b\right)^2}+\frac{1}{\left(1+b\right)^2}+\frac{2}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge1\)
Cho 3 số thực dương a,b,c thoả mãn điều kiện:
\(\left\{{}\begin{matrix}a+b+c=2\\a^2+b^2+c^2=2\end{matrix}\right.\)
Chứng minh rằng:
\(a\sqrt{\frac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}+b\sqrt{\frac{\left(1+a^2\right)\left(1+c^2\right)}{1+b^2}}+c\sqrt{\frac{\left(1+a^2\right)\left(1+b^2\right)}{1+c^2}}\)
Cho a,b,c là các số phân biệt . Chứng minh
\(\left(a^2+b^2+c^2\right)\left[\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\right]\ge\frac{9}{2}\)