Chương II : Tam giác

HT

Cho ABC (AB<AC). Gọi M là trung điểm của BC, Tia Ax đi qua M. Kẻ BE vuông góc với Ax tại E, CF vuông góc với Ax tại F. Chứng minh rằng:

a) BE//CF.

b) BEM = CFM

c) BE = CF.

KR
16 tháng 5 2023 lúc 16:07

`a,`

Ta có: \(\left\{{}\begin{matrix}\text{BE }\bot\text{ Ax}\\\text{CF }\bot\text{ Ax}\end{matrix}\right.\)

`@` Theo tiên đề Euclid

`-> \text {BE // CF}`

`b,`

Xét `2 \Delta` vuông `BEM` và `CFM`:

`\text {MB = MC (M là trung điểm của BC)}`

$\widehat {BME} = \widehat {CMF} (\text {2 góc đối đỉnh})$

`=> \Delta BEM = \Delta CFM (ch-gn)`

`c,`

Vì `\Delta BEM = \Delta CFM (b)`

`-> \text {BE = CF (2 cạnh tương ứng)}`

loading...

Bình luận (0)
NT
16 tháng 5 2023 lúc 10:54

a:BE vuông góc AM

CF vuông góc AM

=>BE//CF

b: Xet ΔBEM vuông tại E và ΔCFM vuông tại F có

MB=MC

góc BME=góc CMF

=>ΔBEM=ΔCFM

b: ΔBEM=ΔCFM

=>BE=CF

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NN
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
MC
Xem chi tiết
CV
Xem chi tiết
CV
Xem chi tiết
CV
Xem chi tiết
H24
Xem chi tiết