Violympic toán 8

H24

Cho a,b,c > 0. Tìm Min: \(\frac{a}{\left(b+c\right)^3}+\frac{b}{\left(c+a\right)^3}+\frac{c}{\left(a+b\right)^3}\ge\frac{27}{8\left(a+b+c\right)^2}\)

DH
11 tháng 2 2020 lúc 14:29

Gọi \(A=\frac{a}{\left(b+3\right)^3}+\frac{b}{\left(c+a\right)^3}+\frac{c}{\left(a+b\right)^3}\)

Và: \(B=a+b+c\)

Áp dụng BĐT Holder ta có:

\(A.B.B\ge\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\ge\left(\frac{3}{2}\right)^3\)

\(\Rightarrow A\ge\frac{27}{8\left(a+b+c\right)^2}\left(đpcm\right)\)

Đẳng thức xảy ra \(\Leftrightarrow a=b=c\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TT
Xem chi tiết
TQ
Xem chi tiết
TB
Xem chi tiết
H24
Xem chi tiết
LS
Xem chi tiết
NQ
Xem chi tiết
TT
Xem chi tiết
HT
Xem chi tiết
TT
Xem chi tiết