Violympic toán 9

BL

Cho a,b,c > 0. Cmr: \(\frac{a\left(b+c\right)}{a^2+\left(b+c\right)^2}+\frac{b\left(c+a\right)}{b^2+\left(c+a\right)^2}+\frac{c\left(a+b\right)}{c^2+\left(a+b\right)^2}\le\frac{6}{5}\)

AH
18 tháng 1 2020 lúc 23:17

Lời giải khác:

Áp dụng BĐT AM-GM:
$a^2+(b+c)^2=a^2+\frac{(b+c)^2}{4}+\frac{3(b+c)^2}{4}$

$\geq a(b+c)+\frac{3}{4}(b+c)^2$

$\Rightarrow \frac{a(b+c)}{a^2+(b+c)^2}\leq \frac{4a}{4a+3b+3c}$

Áp dụng BĐT Cauchy_Schwarz:

$\frac{4a}{4a+3b+3c}=\frac{4a}{a+\frac{a+b+c}{3}+...+\frac{a+b+c}{3}}\leq \frac{1}{100}.4a\left(\frac{1}{a}+\frac{3}{a+b+c}+...+\frac{3}{a+b+c}\right)$

$=\frac{1}{25}+\frac{27a}{25(a+b+c)}$

Tương tự với những phân thức còn lại và cộng theo vế:

$\Rightarrow \text{VT}\leq \frac{3}{25}+\frac{27}{25}=\frac{6}{5}$ (đpcm)

Dấu "=" xảy ra khi $a=b=c$

Bình luận (0)
 Khách vãng lai đã xóa
NT
19 tháng 1 2020 lúc 5:19

Violympic toán 9

Bình luận (0)
 Khách vãng lai đã xóa
BL
18 tháng 1 2020 lúc 17:21

Vũ Minh Tuấn, buithianhtho, Băng Băng 2k6, Akai Haruma, No choice teen, Nguyễn Thanh Hằng, HISINOMA KINIMADO, Arakawa Whiter, @Nguyễn Việt Lâm, @tth_new

Giúp e vs ạ! Thanks! Cần gấp lắm ạ!

Bình luận (0)
 Khách vãng lai đã xóa
DH
18 tháng 1 2020 lúc 17:35

Tham khảo ạ!

Violympic toán 9

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
BL
Xem chi tiết
H24
Xem chi tiết
QD
Xem chi tiết
HT
Xem chi tiết
BL
Xem chi tiết
BL
Xem chi tiết
DT
Xem chi tiết
BL
Xem chi tiết
BL
Xem chi tiết