Chương 1: MỆNH ĐỀ, TẬP HỢP

BM

Cho a,b,c >0

CMR: \(\frac{a}{2a+b}+\frac{b}{2b+c}+\frac{c}{2c+a}\le1\)

MS
11 tháng 5 2019 lúc 19:48

@@

Đặt: \(A=\frac{a}{2a+b}+\frac{b}{2b+c}+\frac{c}{2c+a}\)

\(2A=\frac{2a}{2a+b}+\frac{2b}{2b+c}+\frac{2c}{2c+a}\)

\(2A-3=\frac{2a}{2a+b}-1+\frac{2b}{2b+c}-1+\frac{2c}{2c+a}-1\)

\(2A-3=\frac{-b}{2a+b}+\frac{-c}{2b+c}+\frac{-a}{2c+a}\)

cần cm: \(A\le1\) hay \(2A-3\le-1\) hay

\(\frac{b}{2a+b}+\frac{c}{2b+c}+\frac{a}{2c+a}\ge1\)

bđt này hiển nhiên đúng theo cauchy-schwarz:

\(\frac{b}{2a+b}+\frac{c}{2b+c}+\frac{a}{2c+a}=\frac{b^2}{2ab+b^2}+\frac{c^2}{2bc+c^2}+\frac{a^2}{2ac+a^2}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)

Vậy bđt được chứng minh @@. "=" khi a=b=c

Bình luận (0)
MS
11 tháng 5 2019 lúc 19:15

\(gt\Leftrightarrow\sum\frac{2a}{2a+b}\le2\Leftrightarrow\sum\frac{b}{2a+b}\ge1\)

ta cần cm bđt trên đúng. Thật vậy:

\(\sum\frac{b}{2a+b}=\sum\frac{b^2}{2ab+b^2}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)(đúng)

\("="\Leftrightarrow a=b=c\)

Bình luận (5)

Các câu hỏi tương tự
TN
Xem chi tiết
AD
Xem chi tiết
H24
Xem chi tiết
LN
Xem chi tiết
NX
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
AD
Xem chi tiết