Violympic toán 9

PQ

Cho a,b>0 và a+b+ab=3. Chứng minh \(\frac{3a}{b+1}+\frac{3b}{a+1}+\frac{ab}{a+b}\le a^2+b^2+\frac{3}{2}̸\)

PQ
18 tháng 6 2020 lúc 13:52

@Nguyễn Việt Lâm

Bình luận (0)
NL
18 tháng 6 2020 lúc 22:23

\(3=a+b+ab\le a+b+\frac{1}{4}\left(a+b\right)^2\)

\(\Rightarrow\left(a+b\right)^2+4\left(a+b\right)-12\ge0\)

\(\Leftrightarrow\left(a+b-2\right)\left(a+b+6\right)\ge0\)

\(\Leftrightarrow a+b-2\ge0\Rightarrow a+b\ge2\)

Ta có:

BĐT\(\Leftrightarrow\frac{3a^2+3a+3b^2+3b}{\left(b+1\right)\left(a+1\right)}+\frac{ab}{a+b}\le a^2+b^2+\frac{3}{2}\)

\(\Leftrightarrow\frac{3a^2+3b^2+3a+3b}{4}+\frac{ab}{a+b}\le a^2+b^2+\frac{3}{2}\)

\(\Leftrightarrow3a+3b+\frac{4ab}{a+b}\le a^2+b^2+6\)

\(\Leftrightarrow3a+3b+\frac{4ab}{a+b}\le a^2+b^2+2\left(ab+a+b\right)\)

\(\Leftrightarrow a+b+\frac{4ab}{a+b}\le\left(a+b\right)^2\)

Ta có:

\(VT=a+b+\frac{4ab}{a+b}\le a+b+\frac{\left(a+b\right)^2}{a+b}=2\left(a+b\right)\le\left(a+b\right)\left(a+b\right)=\left(a+b\right)^2\)

Dấu "=" xảy ra khi \(a=b=1\)

Bình luận (0)

Các câu hỏi tương tự
BL
Xem chi tiết
TQ
Xem chi tiết
HB
Xem chi tiết
VH
Xem chi tiết
BL
Xem chi tiết
LQ
Xem chi tiết
AP
Xem chi tiết
LV
Xem chi tiết
BB
Xem chi tiết