Bài 4: Ôn tập chương Giới hạn

HN

Cho a,b>0 . sao cho \(\lim\limits_{x\rightarrow0}\frac{\sqrt{\text{ax}+1}\cdot\sqrt[3]{bx+1}-1}{x}=1\)
Giá trị nhỏ nhất của \(a^2+b^2\) bằng bao nhiêu ?

NL
26 tháng 2 2020 lúc 17:20

\(\frac{\sqrt{ax+1}\left(\sqrt[3]{bx+1}-1\right)+\sqrt{ax+1}-1}{x}=\frac{\frac{bx\sqrt{ax+1}}{\sqrt[3]{\left(bx+1\right)^2}+\sqrt[3]{bx+1}+1}+\frac{ax}{\sqrt{ax+1}+1}}{x}=\frac{b\sqrt{ax+1}}{\sqrt[3]{\left(bx+1\right)^2}+\sqrt[3]{bx+1}+1}+\frac{a}{\sqrt{ax+1}+1}\)

\(\Rightarrow\lim\limits_{x\rightarrow0}f\left(x\right)=a+b\Rightarrow a+b=1\)

\(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2=\frac{1}{2}\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
DD
Xem chi tiết
SK
Xem chi tiết
TN
Xem chi tiết
DD
Xem chi tiết
MN
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết