Bài 4: Ôn tập chương Giới hạn

MN

Câu 1:

Xác đinh k để hàm: f(x)=\(\left\{{}\begin{matrix}\frac{x^{2016}+x-2}{\sqrt{2018x+1}-\sqrt{x+2018}}\\k\end{matrix}\right.\)liên tục tại 1

Câu 2: Cho \(lim\)(x-->1) \(\frac{x^2+ax+b}{x^2-1}=\frac{1}{2}\). Tổng S= \(a^2+b^2\) bằng bao nhiêu

Câu 3: lim(x->1) \(\frac{\sqrt{x^2+x+2}-\sqrt[3]{7x+1}}{\sqrt{2}\left(x-1\right)}=\frac{a\sqrt{2}}{b}+c\) với a/b là phân số tối giản. Tính a+b+c

NL
5 tháng 3 2020 lúc 22:45

\(\lim\limits_{x\rightarrow1}\frac{x^{2016}+x-2}{\sqrt{2018x+1}-\sqrt{x+2018}}=\lim\limits_{x\rightarrow1}\frac{2016x^{2015}+1}{\frac{1009}{\sqrt{2018x+1}}-\frac{1}{2\sqrt{x+2018}}}=\frac{2017}{\frac{1009}{\sqrt{2019}}-\frac{1}{2\sqrt{2019}}}=2\sqrt{2019}\)

Để hàm liên tục tại \(x=1\)

\(\Rightarrow\lim\limits_{x\rightarrow1}f\left(x\right)=f\left(1\right)\Rightarrow k=2\sqrt{2019}\)

2.

\(\lim\limits_{x\rightarrow1}\frac{x^2+ax+b}{x^2-1}=\frac{1}{2}\Leftrightarrow\left\{{}\begin{matrix}a+b+1=0\\\lim\limits_{x\rightarrow1}\frac{2x+a}{2x}=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=-1\\\frac{a+2}{2}=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=0\end{matrix}\right.\) \(\Rightarrow S=1\)

3.

\(\lim\limits_{x\rightarrow1}\frac{\sqrt{x^2+x+2}-2+2-\sqrt[3]{7x+1}}{\sqrt{2}\left(x-1\right)}=\lim\limits_{x\rightarrow1}\frac{\frac{\left(x-1\right)\left(x+2\right)}{\sqrt{x^2+x+2}+2}-\frac{7\left(x-1\right)}{\sqrt[3]{\left(7x+1\right)^2}+2\sqrt[3]{7x+1}+4}}{\sqrt{2}\left(x-1\right)}\)

\(=\lim\limits_{x\rightarrow1}\frac{1}{\sqrt{2}}\left(\frac{x+2}{\sqrt{x^2+x+2}+2}-\frac{7}{\sqrt[3]{\left(7x+1\right)^2}+2\sqrt[3]{7x+1}+4}\right)\)

\(=\frac{1}{\sqrt{2}}\left(\frac{3}{4}-\frac{7}{12}\right)=\frac{\sqrt{2}}{12}\)

\(\Rightarrow a+b+c=1+12+0=13\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
PT
Xem chi tiết
NP
Xem chi tiết
NP
Xem chi tiết
NP
Xem chi tiết
TC
Xem chi tiết
DD
Xem chi tiết
PA
Xem chi tiết
DD
Xem chi tiết
PT
Xem chi tiết