Do \(\frac{a}{b}\) tối giản \(\RightarrowƯCLN\left(a;b\right)=1\) (1)
Giả sử \(\frac{ab}{a+b}\) không tối giản
Gọi \(ƯCLN\left(ab;a+b\right)=d\ne1\Rightarrow\left\{{}\begin{matrix}ab⋮d\\\left(a+b\right)⋮d\end{matrix}\right.\)
Do \(a;b\) nguyên tố cùng nhau mà \(ab⋮d\Rightarrow\left[{}\begin{matrix}a⋮d\\b⋮d\end{matrix}\right.\)
- Nếu \(a⋮d\) lại có \(a+b⋮d\Rightarrow b⋮d\RightarrowƯCLN\left(a;b\right)=d\ne1\) mâu thuẫn giả thiết (1)
- Nếu \(b⋮d\) mà \(a+b⋮d\Rightarrow a⋮d\RightarrowƯCLN\left(a;b\right)=d\ne1\) cũng mâu thuẫn (1)
Vậy điều giả sử là sai \(\Rightarrow\frac{ab}{a+b}\) tối giản