Cho phương trình bậc hai: x²-7x+m=0 a) Giải phương trình, m = 1 b) Tìm giá trị m để phương trình (1) có 2 nghiệm x1 và x2 thoả mãn: x1²+x2²=29
Cho phương trình x2 -2(m+1)x +m2+2m-3=0(m là than số)
a. giải phương trình khi m=0
b. Chứng tỏ phương trình luôn có 2 nghiệm phân biệt
Cho phương trình: \(x^2-\left(2m+1\right)x-m-4=0\)
a, Giải phương trình khi m=1
b, Chứng tỏ rằng phương trình luôn có 2 nghiệm phân biệt
Chứng minh rằng tồn tại một cặp số duy nhất (x, y) thỏa mãn phương trình:
\(x^2-4x+y-6\sqrt{y}+13=0\)
Cho phương trình : x^2 - 5x +m -1 (1) (m là tham số )
a, Giải phương trình (1) khi m=7
b, Tìm giá trị của m để phương trình (1) có 2 nghiệm X1,X2 thỏa màn đẳng thức : ( X1.X2 +1 )^2 = 20 (X1 + X2 )
bt1 cho pt: \(x^2+2\left(m+2\right)x+4m-1=0\) (1) (m là tham số, x là ẩn)
a, giải pt (1) khi m=2
b, chứng minh rằng với mọi giá trị của tham số m thì phương trình (1) luôn có hai nghiệm phân biệt. Gọi x1, x2 là hai nghiệm của phương trình (1) , tìm m để \(x_1^2+x_2^2=30\)
BT2; cho pt; \(x^2-2\left(m+1\right)x-\left(2m+1\right)=0\)
a, GPT khi m=2
b, chứng minh phương trình luôn có hai nghiệm phân biệt vơi mọi m
Bài 3:a)Trên cùng một hệ trục tọa độ Oxy, vẽ đồ thị hai hàm số y=1/2x2(P) và y=-x+4(D).
b)Tìm tọa độ giao điểm M,N của (P) và(D) bằng phép tính.
Bài 4: Cho phương trình: x2 - 4x + m + 1= 0. Tìm m để phương trình có hai nghiệm x1,x2 thỏa mãn -x1x2 + (x1 + x2) = 2