Cho a,b,c >0 thỏa mãn biểu thức a+b+c=1
Chứng minh rằng: \(\sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}\le2.\)
Cho a,b>0, a+b\(\le\)1. Chứng minh rằng a+b+\(\frac{1}{a^2}+\frac{1}{b^2}\ge9\)
GIÚP MÌNH NHA
Các bạn giúp mình với!
1. GIả sử a,b,c là ba số khác nhau và \(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}=0\). Chứng minh rằng \(\dfrac{a}{\left(b-c\right)^2}+\dfrac{b}{\left(c-a\right)^2}+\dfrac{c}{\left(a-b\right)^2}=0\)
2. Giả sử a,b,c là ba số khác nhau và khác 0 thỏa mãn điều kiện a+b+c=0. Chứng minh rằng:\(\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\left(\dfrac{c}{a-b}+\dfrac{a}{b-c}+\dfrac{b}{c-a}\right)=9\)
Cho a,b ≥ 0 thỏa mãn :
\(\sqrt{a}+\sqrt{b}=1\). Chứng minh rằng:
\(ab\left(a+b\right)^2< \dfrac{1}{64}\)
Cho a, b, c là những số hữu tỉ khác 0 và a = b + c. Chứng minh rằng \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\) là một số hữu tỉ
cho a,b,c là những số hữu tỉ khác 0 và a=b+c. chứng minh rằng \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\)là một số hữu tỉ
1.Cho x, y \(\ge\)0 và x+ y=1
Chứng minh rằng : \(x^3+y^3\ge\dfrac{1}{4}\)
2. Cho \(a,b,c\ge0\).Chứng minh rằng:
a, \(a^3+b^3>ab\left(a+b\right)\)
b, \(a^3+b^3+c^3\ge a^2b+ b^2c+c^2a\)
3. Cho x+ y+ z=3 và x, y, z>0. Chứng minh rằng:
a, \(P=\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{3}{2}\)
b, \(Q=\dfrac{x}{x^2+1}+\dfrac{y}{y^2+1}+\dfrac{z}{z^2+1}\le\dfrac{3}{2}\)
1.Cho biểu thức A= (\(\frac{1}{\sqrt{a}-\sqrt{a-b}}\)+\(\frac{1}{\sqrt{a}+\sqrt{a+b}}\)):(1+\(\frac{\sqrt{a+b}}{\sqrt{a-b}}\))
a/ rút gọn A
b/Tìm b biết \(|A|\)=A
2.Chứng minh giá trị biểu thức C không phụ thuộc vào x,y:
C=(\(\frac{1}{\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x+y}}}\)_\(\frac{1}{\frac{\sqrt{x+y}}{\sqrt{x}+\sqrt{y}}}\))-\(\frac{x+y}{2\sqrt{x}\sqrt{y}}\)-\(\frac{\sqrt{\left(x+y\right)^4}}{4xy}\) (x>0, y>0)
3.Cho B=(\(\sqrt{a}\)+\(\frac{c-\sqrt{ac}}{\sqrt{a}+\sqrt{c}}\)).\(\frac{1}{\frac{a}{\sqrt{ac}+c}+\frac{c}{\sqrt{ac}-a}-\frac{a+c}{\sqrt{ac}}}\)
a/ rút gọn B
b/ Với giá trị nào của a và c để B>0 và B<0
4.Cho D=(\(\sqrt{m}+\frac{2mn}{1+n^2}+\sqrt{m}-\frac{2mn}{1+n^2}\))\(\sqrt{\frac{1}{n^2}}\)
a. rút gọn D
b.tìm giá trị D với m=\(\sqrt{56+24\sqrt{5}}\)
c.tìm giá trị nhỏ nhất của D
Cho a,b,c là các số thực thỏa mãn a+b+c=1
chứng minh rằng: \(\frac{a^2}{a+b}+\frac{b^2}{b+c}\frac{c^2}{c+a}\)>=\(\frac{1}{2}\)