Chương I - Căn bậc hai. Căn bậc ba

NP

Cho a,b ≥ 0 thỏa mãn :

\(\sqrt{a}+\sqrt{b}=1\). Chứng minh rằng:

\(ab\left(a+b\right)^2< \dfrac{1}{64}\)

PA
27 tháng 7 2018 lúc 21:28

Ta có:

\(\sqrt{a}+\sqrt{b}=1\)

\(\Leftrightarrow(\sqrt{a}+\sqrt{b})^2=1\)

\(\Leftrightarrow a+b+2\sqrt{ab}=1\)

\(\Leftrightarrow2\sqrt{ab}=1-\left(a+b\right)\)

\(\Leftrightarrow\sqrt{ab}=\dfrac{1-\left(a+b\right)}{2}\)

Lại có:

\(ab\left(a+b\right)^2=\left[\sqrt{ab}.\left(a+b\right)\right]^2=\left[\dfrac{1-\left(a+b\right)}{2}.\left(a+b\right)\right]^2=\left[\dfrac{\left(a+b\right)-\left(a+b\right)^2}{2}\right]^2\)

Ta thấy:

\(\left(a+b\right)-\left(a+b\right)^2=-\left[\left(a+b\right)^2-\left(a+b\right)\right]=-\left[\left(a+b\right)^2-\left(a+b\right)+\dfrac{1}{4}-\dfrac{1}{4}\right]=-\left(a+b-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

\(\Rightarrow\dfrac{\left(a+b\right)-\left(a+b\right)^2}{2}\le\dfrac{1}{8}\)

\(\Leftrightarrow[\dfrac{\left(a+b\right)-\left(a+b\right)^2}{2}]^2\le\dfrac{1}{64}\)

hay \(ab\left(a+b\right)^2\le\dfrac{1}{64}\) (đpcm)

Bình luận (0)

Các câu hỏi tương tự
NK
Xem chi tiết
LM
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
SV
Xem chi tiết
HD
Xem chi tiết
NQ
Xem chi tiết
ZZ
Xem chi tiết
NB
Xem chi tiết