Chương I - Căn bậc hai. Căn bậc ba

PT

Cho a,b,c >0 thỏa mãn biểu thức a+b+c=1

Chứng minh rằng: \(\sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}\le2.\)

N2
16 tháng 7 2018 lúc 20:05

Đặt VT= \(\sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}\)

Áp dụng bất đẳng thức Bu-nhi-a-cốp-xki ta có:

\(VT^2=\left(\sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}\right)^2\le\)

\(\le\left(1^2+1^2+1^2\right)\left(a+b+c+ab+bc+ca\right)\)

Lại có \(ab+bc+ca\le\dfrac{1}{3}\left(a+b+c\right)^2\)( tự cm nhé)

Từ đó \(VT^2\le3.\left(1+\dfrac{1}{3}\right)=4\) (do a+b+c=1)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{3}\)

Bình luận (0)

Các câu hỏi tương tự
NQ
Xem chi tiết
VT
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
TG
Xem chi tiết
PK
Xem chi tiết
DT
Xem chi tiết
HQ
Xem chi tiết