Phương trình bậc nhất một ẩn

CN

Cho \(a^3+b^3+c^3=3abc\)(abc khác 0)

Tính N= \(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)

NT
28 tháng 2 2021 lúc 10:55

Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[a^2+2ab+b^2-ac-bc+c^2-3ab\right]=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\cdot\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\right]=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

Ta có: \(N=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)

\(=\dfrac{a+b}{b}\cdot\dfrac{b+c}{c}\cdot\dfrac{a+c}{a}\)

Trường hợp 1: a+b+c=0

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)

\(\Leftrightarrow N=\dfrac{-c}{b}\cdot\dfrac{-a}{c}\cdot\dfrac{-b}{a}=\dfrac{-\left(a\cdot b\cdot c\right)}{a\cdot b\cdot c}=-1\)

Trường hợp 2: a=b=c

\(\Leftrightarrow N=\dfrac{b+b}{b}\cdot\dfrac{a+a}{a}\cdot\dfrac{c+c}{c}=2\cdot2\cdot2=8\)

Bình luận (0)
OF
28 tháng 2 2021 lúc 10:59

1, Ta có a^3+b^3+c^3=3abc

-> a^3+b^3+c^3+3a^2b+3ab^2=3abc+3a^2b+3ab^2

-> (a+b)3 + c^3 - 3ab(a+b+c)=0

-> (a+b+c). ((a+b)^2-(a+b).c+c^2)-3ab(a+b+c)=0

-> (a+b+c)(a^2+2ab+b^2-ac-bc+c^2-3ab)=0

Th1: a+b+c=0

->P= a+b/2 . b+c/2 . c+a/2

= (-c)(-a)(-b)/2=-1

TH2 a^2+b^2+c^2-ab-bc-ca=0

->2a^2+2b^2+2c^2-2ab-abc-2ac=0

->(a^2-2ab+b^2)+(a^2-2ac+c^2)+(b^2-2bc+c^2)=0

-> (a-b)^2+(a-c)^2+(b-c)^2=0

Mà (a-b)^2+(a-c)^2+(b-c)^2>= 0

Dấu = xảy ra (=)a-b=0

                         b-c=0

                          a-c=0

-> a=b=c

->P= 1+a/b+1+b/c+1+c/a=2+2+2= 8

Bình luận (0)

Các câu hỏi tương tự
PL
Xem chi tiết
ND
Xem chi tiết
TT
Xem chi tiết
WE
Xem chi tiết
ND
Xem chi tiết
ND
Xem chi tiết
QD
Xem chi tiết
KH
Xem chi tiết
H24
Xem chi tiết