Phương trình bậc nhất một ẩn

ND

1) giải pt :

a) \(\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)

b) \(\dfrac{29-x}{21}+\dfrac{27-x}{23}+\dfrac{25-x}{25}+\dfrac{23-x}{27}+\dfrac{21-x}{29}=-5\)

2) giải pt :

a) \(\left(5x+1\right)^2=\left(3x-2\right)^2\)

b) \(\left(x+2\right)^3=\left(2x+1\right)^3\)

c) \(\left(x+3\right)^4+\left(x+5\right)^4=2\)

d) \(x^4-3x^3+4x^2-3x+1=0\)

ND
7 tháng 7 2018 lúc 16:14

1)

\(\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)

\(\Leftrightarrow\dfrac{x-5}{100}+1+\dfrac{x-4}{101}+1+\dfrac{x-3}{102}+1=\dfrac{x-100}{5}+1+\dfrac{x-101}{4}+1+\dfrac{x-102}{3}+1\)

\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}=\dfrac{x-105}{5}+\dfrac{x-105}{4}+\dfrac{x-105}{3}+\dfrac{x-105}{2}\)

\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}-\dfrac{x-105}{5}-\dfrac{x-105}{4}-\dfrac{x-105}{3}-\dfrac{x-105}{2}=0\)

\(\Leftrightarrow\left(x-105\right)\left(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}-\dfrac{1}{5}-\dfrac{1}{4}-\dfrac{1}{3}-\dfrac{1}{2}\right)=0\)\(\Leftrightarrow105-x=0\)

\(\Leftrightarrow x=105\)

b)

\(\dfrac{29-x}{21}+\dfrac{27-x}{23}+\dfrac{25-x}{25}+\dfrac{23-x}{27}+\dfrac{21-x}{29}=0\)

\(\Leftrightarrow\dfrac{29-x}{21}+1+\dfrac{27-x}{23}+1+\dfrac{25-x}{25}+1+\dfrac{23-x}{27}+1+\dfrac{21-x}{29}+1=0\)

\(\Leftrightarrow\dfrac{50-x}{21}+\dfrac{50-x}{23}+\dfrac{50-x}{25}+\dfrac{20-x}{27}+\dfrac{50-x}{29}=0\)

\(\Leftrightarrow\left(50-x\right)\left(\dfrac{1}{21}+\dfrac{1}{23}+\dfrac{1}{25}+\dfrac{1}{27}+\dfrac{1}{29}\right)=0\)

\(\Leftrightarrow50-x=0\)

\(\Leftrightarrow x=50\)

Bình luận (0)
ND
7 tháng 7 2018 lúc 16:14

2)

\(\left(5x+1\right)^2=\left(3x-2\right)^2\)

\(\Leftrightarrow\left|5x+1\right|=\left|3x-2\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+1=3x-2\\5x+1=-3x+2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\\x=\dfrac{1}{8}\end{matrix}\right.\)

b) \(\left(x+2\right)^3=\left(2x+1\right)^3\)

\(\Leftrightarrow x^3+6x^2+12x+8=8x^3+12x^2+6x+1\)

\(\Leftrightarrow-7x^3-6x^2+6x+7=0\)

\(\Leftrightarrow-7x^3+7x^2-13x^2+13x-7x+7=0\)

\(\Leftrightarrow-7x^2\left(x-1\right)-13x\left(x-1\right)-7\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-7x^2-13x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\-7x^2-13x-7=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-7\left(x^2+\dfrac{13}{7}x+1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-7\left(x+\dfrac{13}{14}\right)^2-\dfrac{169}{196}=0\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow x=1\)

Bình luận (0)
ND
7 tháng 7 2018 lúc 16:14

c. \(\left(x+3\right)^4+\left(x+5\right)^4=2\)

Đặt: \(y=x+4\), ta có:

\(\left(y-1\right)^4+\left(y+1\right)^4=2\)

\(\Leftrightarrow y^4-4y^3+6y^2-4y+1+y^4+4y^3+6y^2+4y+1=2\)

\(\Leftrightarrow2y^4+12y^2=0\)

\(\Leftrightarrow2y^2\left(y^2+6\right)=0\)

\(\Leftrightarrow y=0\)

\(\Leftrightarrow x=-4\)

d) \(x^4-3x^3+4x^2-3x+1=0\)

\(\Leftrightarrow x^4-x^3-2x^3+2x^2+2x^2-2x-x+1=0\)

\(\Leftrightarrow x^3\left(x-1\right)-2x^2\left(x-1\right)+2x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-2x^2+2x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-x^2-x^2+x+x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-1\right)-x\left(x-1\right)+\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^2-x+1\right)=0\)

\(\Leftrightarrow x=1\)

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
NB
Xem chi tiết
KH
Xem chi tiết
DT
Xem chi tiết
KH
Xem chi tiết
WE
Xem chi tiết
ND
Xem chi tiết
TT
Xem chi tiết
PL
Xem chi tiết