Trong các điều khẳng định sau đây, điều nào là đúng ?
a) Khoảng cách của hai đường thẳng chéo nhau là đoạn ngắn nhất trong các đoạn thẳng nối hai điểm bất kì nằm trên hai đường thẳng ấy và ngược lại
b) Qua một điểm duy nhất một mặt phẳng vuông góc với một mặt phẳng khác
c) Qua một đường thẳng có duy nhất một mặt phẳng vuông góc với một mặt phẳng khác
d) Đường thẳng nào vuông góc với cả hai đường thẳng chéo nhau cho trước là đường vuông góc chung của hai đường thẳng đó
Hình chóp tam giác S.ABC có đáy là tam giác đều ABC cạnh 7a, có cạnh SC vuông góc với mặt phẳng đáy (ABC) và SC = 7a
a) Tính góc giữa SA và BC
b) Tính khoảng cách giữa hai đường thẳng chéo nhau SA và BC
Xét các mệnh đề sau đây xem mệnh đề nào đúng, mệnh đề nào sai ?
a) Qua một điểm, có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước
b) Qua một đường thẳng, có duy nhất một mặt phẳng vuông góc với một đường thẳng cho trước
c) Qua một điểm, có duy nhất một mặt phẳng vuông góc với một đường thẳng cho trước
d) Cho hai đường thẳng a và b. Nếu có mặt phẳng \(\left(\alpha\right)\) không chứa cả a và b thì a và b chéo nhau
Trong không gian hai đường thẳng không cắt nhau có thể vuông góc với nhau không ? Giả sử hai đường thẳng a, b lần lượt có vectơ chỉ phương là \(\overrightarrow{u}\) và \(\overrightarrow{v}\). Khi nào ta có thể kết luận a và b vuông góc với nhau ?
Hãy nêu cách tính khoảng cách :
a) Từ một điểm đến một đường thẳng
b) Từ đường thẳng a đến mặt phẳng \(\left(\alpha\right)\) song song với a
c) Giữa hai mặt phẳng song song
Hình thoi ABCD tâm O có cạnh a và có \(OB=\dfrac{a\sqrt{3}}{3}\). Trên đường thẳng vuông góc với mặt phẳng (ABCD) tại O ta lấy một điểm S sao cho SB = a
a) Chứng minh tam giác SAC là tam giác vuông và SC vuông góc với BD
b) Chứng minh \(\left(SAD\right)\perp\left(SAB\right),\left(SCB\right)\perp\left(SCD\right)\)
c) Tính khoảng cách giữa hai đường thẳng SA và BD
Trong các mệnh đề sau đây, mệnh đề nào đúng ? Mệnh đề nào sai ?
a) Cho hai đường thẳng a và b song song với nhau. Nếu có một đường thẳng d vuông góc với a thì d vuông góc với b
b) Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì chúng song song với nhau
c) Một mặt phẳng \(\left(\alpha\right)\) và một đường thẳng a cùng vuông góc với đường thẳng b thì a // \(\left(\alpha\right)\)
d) Hai mặt phẳng \(\left(\alpha\right)\) và \(\left(\beta\right)\) phân biệt cùng vuông góc với một mặt phẳng \(\left(\gamma\right)\) thì \(\left(\alpha\right)\) // \(\left(\beta\right)\)
e) Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì chúng song song với nhau
f) Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì chúng song song
Tứ diện ABCD có hai mặt ABC và ADC nằm trong hai mặt phẳng vuông góc với nhau. Tam giác ABC vuông tại A có AB = a, AC = b. Tam giác ADC vuông tại D có CD = a
a) Chứng minh các tam giác BAD và BDC là những tam giác vuông
b) Gọi I và K lần lượt là trung điểm của AD và BC. Chứng minh IK là đường vuông góc chung của hai đường thẳng AD và BC
Hình chóp S.ABCD có đáy ABCD là hình thoi tâm O cạnh a, góc ABC bằng 600 . SO⊥(ABCD), SA = a.
a) Chứng minh AC ⊥(SBD).
b) Tính góc giữa đường thẳng SA và (SBD).