a) \(\left(A\cap B\right)\cup A=A\)
b) \(\left(A\cup B\right)\cap B=B\)
c) (\(A\)\ \(B\)) \(\cup B=A\cup B\)
d) (\(A\)\ \(B\)) \(\cap\)(\(B\)\\(A\)) \(=\varnothing\)
a) \(\left(A\cap B\right)\cup A=A\)
b) \(\left(A\cup B\right)\cap B=B\)
c) (\(A\)\ \(B\)) \(\cup B=A\cup B\)
d) (\(A\)\ \(B\)) \(\cap\)(\(B\)\\(A\)) \(=\varnothing\)
Cho M = (-∞; 5], N = [-2; 6). Chọn khẳng định đúng
A. \(\left(A\B\right)\cap\left(B\cup C\right)\)= {8}
B. \(\left(A\B\right)\cap\left(B\cup C\right)\)= ∅
C. \(\left(A\B\right)\cap\left(B\cup C\right)\)= (-6;8]
D. \(\left(A\B\right)\cap\left(B\cup C\right)\)= (-6;-3)
Cho \(A\subset B\) và \(B\subset C\). Mệnh đề nào dưới đây sai?
A.\(\left(A\cap B\right)\cup\left(B\cap C\right)=B\)
B. \(A\cup\left(B\C\right)=A\)
C. \(A\backslash\left(B\cap C\right)=\phi\)
D. \(\left(A\cap C\right)\cup B=C\)
Cho \(a,b,c\) là những số thực \(a< b< c\). Hãy xác định các tập hợp sau :
a) \(\left(a,b\right)\cap\left(b;c\right)\)
b) \(\left(a;b\right)\cup\left(b;c\right)\)
c) \(\left(a;c\right)\)\ \(\left(b;c\right)\)
d) \(\left(a;b\right)\) \ \(\left(b;c\right)\)
Cho tập hợp CRA = \([-3;\sqrt{8})\), CRB = \(\left(-5;2\right)\cup\left(\sqrt{3};\sqrt{11}\right)\). Tập CR\(\left(A\cap B\right)\) ?
Cho A , B , C , E sao cho \(A,B,C\subset E\)
CMR : \(C_E\left(A\cap B\right)=C_EA\cup C_EB\)
CÂU 1: giải phương trình sau:
\(x^2=-\sqrt{x+2019}+2019\)
CÂU 2: chứng minh: \(C_E\left(A\cup B\right)=\left(C_EA\right)\cap\left(C_EB\right)\) . trong đó A, B là con của E
đặc biệt viết lại là: \(E\backslash\left(A\cup B\right)=\left(E\backslash A\right)\cap\left(E\B\right)\)
* chú ý: \(E\in\left(A\cap B\right)\Leftrightarrow\left\{{}\begin{matrix}x\in A\\x\in B\end{matrix}\right.\)
\(x\notin\left(A\cup B\right)\Leftrightarrow\left\{{}\begin{matrix}x\notin A\\x\notin B\end{matrix}\right.\)
\(x\in\left(A\cup B\right)\Leftrightarrow\left\{{}\begin{matrix}x\in A\\x\in B\end{matrix}\right.\)
\(x\notin\left(A\cup B\right)\Leftrightarrow\left\{{}\begin{matrix}x\notin A\\x\notin B\end{matrix}\right.\)
m.n giúp mk bài này ạ. thank m.n
Cho A, B là hai tập hợp khác rỗng phân biệt. Xem xét trong các mệnh đề sau, mệnh đề nào đúng ?
a) \(A\subset B\)\ A
b) \(A\subset A\cup B\)
c) \(A\cap B\subset A\cup B\)
d) A\ \(B\subset A\)
Cho tập \(A=\left[m-1;\frac{m+1}{2}\right]\)và \(B=\left(-\infty;-2\right)\cup\left(2;+\infty\right)\) Tìm m để \(A\cap B\) chỉ có 1 phần tử
Những quan hệ nào trong các quan hệ sau là đúng ?
a. \(A\subset A\cup B\)
b. \(A\subset A\cap B\)
c. \(A\cap B\subset A\cup B\)
d. \(A\cup B\subset B\)
e. \(A\cap B\subset A\)