Violympic toán 9

TT

Cho a, b, c là các số thực dương thoả mãn: ab+bc+ca=abc. Tìm giá trị lớn nhất của biểu thức: \(P=\dfrac{a}{bc\left(a+1\right)}+\dfrac{b}{ca\left(b+1\right)}+\dfrac{c}{ab\left(c+1\right)}\)

NL
10 tháng 7 2020 lúc 17:22

\(ab+bc+ca=abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=1\)

\(P=\sum\frac{yz}{x+1}=\sum\frac{yz}{x+x+y+z}=\sum\frac{yz}{x+y+x+z}\le\frac{1}{4}\sum\left(\frac{yz}{x+y}+\frac{yz}{x+z}\right)\)

\(P\le\frac{1}{4}\left(x+y+z\right)=\frac{1}{4}\)

\(P_{max}=\frac{1}{4}\) khi \(x=y=z=\frac{1}{3}\) hay \(a=b=c=3\)

Bình luận (0)

Các câu hỏi tương tự
MD
Xem chi tiết
PP
Xem chi tiết
H24
Xem chi tiết
VT
Xem chi tiết
DD
Xem chi tiết
NH
Xem chi tiết
TT
Xem chi tiết
LD
Xem chi tiết
BT
Xem chi tiết