Ôn tập cuối năm phần số học

NM

Cho A= 4 + 4\(^2\) + 4\(^3\) +...............+ 4\(^{23}\) + 4\(^{24}\). Chứng minh rằng

A chia hết cho 20

A chia hết cho 21

A chia hết cho 420

NH
6 tháng 6 2018 lúc 6:46

a/ Ta có :

\(A=4+4^2+.....+4^{23}+4^{24}\)

\(=\left(4+4^2\right)+\left(4^3+4^4\right)+....+\left(4^{23}+4^{24}\right)\) (12 nhóm)

\(=4\left(4+4^2\right)+4^3\left(4+4^2\right)+.......+4^{23}\left(4+4^2\right)\)

\(=4.20+4^3.20+.....+4^{23}.20\)

\(=20\left(4+4^3+...+4^{23}\right)⋮20\)

\(\Leftrightarrow A⋮20\left(đpcm\right)\)

b/ Ta có :

\(A=4+4^2+4^3+........+4^{23}+4^{24}\)

\(=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+.......+\left(4^{22}+4^{23}+4^{24}\right)\)

\(=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+....+4^{22}\left(1+4+4^2\right)\)

\(=4.21+4^4.21+....+4^{22}.21\)

\(=21\left(4+4^4+......+4^{22}\right)⋮21\)

\(\Leftrightarrow A⋮21\left(đpcm\right)\)

Bình luận (0)
H24
6 tháng 6 2018 lúc 15:31

*A chia hết cho 20 : A có 24 lũy thừa.
Trước hết ta thấy rõ A chia hết cho 4 vì từng số hang của dãy số A chia hết cho 4
A có 24 lũy thừa nên ta chia thành 12 cặp lũy thừa
A = (4+4^2) + (4^3+4^4) + ...+ (4^23+4^24)
A = 4.(1+4) + 4^3.(1+4) + ...+ 4^23.(1+4)
A = 4.5 + 4^3.5 + .....+ 4^23.5
vậy A chia hết cho 5 và 4 nên A chia hết cho 20

*A chia hết cho 21 : A có 24 lũy thừa

Nhóm thành mỗi nhóm 3 lũy thừa ta được 8 nhóm lũy thừa
A = 4.(1+4+4^2) + ......+ 4^22.(1+4+4^2)
A = 4.21 + ......+4^22.21 => A chia hết 21

Vậy A chia hết cho 21.


*A chia hết cho 420 .

Ta có : A chia hết cho 20 và 21 mà 20 và 21 là nguyên tố cùng nhau nên
A chia hết cho 20.21 = 420 (Áp dụng: Một số đồng thời chia hết cho cả m và n. m và n đồng thời chỉ chia hết cho 1 và chính nó thì số đó chia hết cho tích mxn)

Vậy A chia hết cho 420 .

Bình luận (0)
AM
24 tháng 2 2019 lúc 10:29

a. Ta có:

A = 4 + 4 + 4 +......+ 4 + 4

A = \(\left(4+4^2\right)+\left(4^3+4^4\right)+......+\left(4^{23}+4^{24}\right)\)

A = \(4\left(4+4^2\right)+4^3\left(4+4^2\right)+......+4^{23}\left(4+4^2\right)\)

A = \(4.20+4^3.20+......+4^{23}.20\)

A = \(20\left(4+4^3+......+4^{23}\right)\)

\(\Leftrightarrow\) A \(⋮\) \(20\) (đpcm)

b. Ta có:

A = \(4+4^2+4^3+......+4^{23}+4^{24}\)

A = \(\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+......+\left(4^{22}+4^{23}+4^{24}\right)\)

A = \(4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+......+4^{22}\left(1+4+4^2\right)\)

A = \(4.21+4^4.21+......+4^{22}.21\)

A = \(21\left(4+4^4+......+4^{22}\right)\)

\(\Leftrightarrow\) A \(⋮\) \(21\) (đpcm)

c. Ta có:

A \(⋮\) \(20\) A \(⋮\) 21

\(\Rightarrow\) A \(⋮\) \(\left(20.21\right)\)

\(\Rightarrow\) A \(⋮\) \(420\) (đpcm)

Bình luận (0)

Các câu hỏi tương tự
LH
Xem chi tiết
NN
Xem chi tiết
PD
Xem chi tiết
NA
Xem chi tiết
DV
Xem chi tiết
LA
Xem chi tiết
AL
Xem chi tiết
HT
Xem chi tiết
DH
Xem chi tiết