Đại số lớp 7

NA

Cho 5 số nguyên: a1; a2; a3; a4; a5

CMR: \(D=\left(a_1-a_2\right).\left(a_1-a_3\right).\left(a_1-a_4\right).\left(a_1-a_5\right).\left(a_2-a_3\right).\left(a_2-a_4\right).\left(a_2-a_5\right).\left(a_3-a_4\right).\left(a_3-a_5\right).\left(a_4-a_5\right)⋮288\)

SG
7 tháng 11 2016 lúc 22:27
Xét 4 số: a1; a2; a3; a4; 4 số này khi chia cho 3 chỉ có thể dư 0; 1; 2. Có 4 số mà chỉ có 3 loại số dư nên theo nguyên lí Đi rich let có ít nhất 2 số cùng dư khi chia cho 3, hiệu của chúng chia hết cho 3Tương tự xét 4 số a2; a3; a4; a5 và => 4 số này tạo ra ít nhất 1 hiệu chia hết cho 3

Từ 2 điều trên => D chia hết cho 9 (1)

Có 5 số nguyên mà chỉ có 2 loại số lẻ và chẵn nên theo nguyên lí Đi rich let có ít nhất 3 số cùng lẻ (chẵn)

Nếu cả 5 số đó cùng chẵn hoặc cùng lẻ ta dễ dàng => D chia hết cho 32+ Nếu trong 5 số, có 1 số lẻ, 4 số chẵn, không mất tính tổng quát ta giả sử 4 số đó là a1; a2; a3; a4, dễ dàng => D chia hết cho 32

+ Nếu trong 5 số, có 1 số chẵn, 4 số lẻ tương tự như trên cũng => D chia hết cho 32

+ Nếu trong 5 số, có 3 số chẵn, 2 số lẻ ; 3 số chẵn này khi chia cho 4 chỉ có thể dư 0 hoặc 2. Có 3 số mà chỉ có 2 loại số dư nên theo nguyên lí Đi rich let có ít nhất 2 số cùng dư khi chia cho 4, hiệu của chúng chia hết cho 4 cộng với 3 hiệu còn lại chia hết cho 2 tạo bởi 3 số chẵn (trừ trường hợp trên) và 2 số lẻ cũng => D chia hết cho 32

+ Xét tương tự với trường hợp trong 5 số có 3 số lẻ, 2 số chẵn

Vậy trong các trường hợp ta luôn được D chia hết cho 32 (2)

Từ (1) và (2), do (9;32)=1 => D chia hết cho 288 (đpcm)

Bình luận (0)

Các câu hỏi tương tự
DH
Xem chi tiết
NL
Xem chi tiết
NP
Xem chi tiết
PT
Xem chi tiết
ND
Xem chi tiết
TT
Xem chi tiết
TN
Xem chi tiết
NN
Xem chi tiết
KK
Xem chi tiết