Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

KR

Cho 4 số nguyên ko âm a,b,c,d thỏa mãn \(a^2+2b^2+3c^2+4d^2=36,2a^2+b^2-2d^2=6\). Tìm GTNN của \(Q=a^2+b^2+c^2+d^2\)

PT
16 tháng 1 2021 lúc 21:06

từ hệ điều kiện, bằng cách cộng theo vế ta được:  pmin=14 đạt được khi (2) ta nhận được 0≤b≤2⇔[b=0b=2Khi đó:-Với (2) có dạng a thỏa mãn.-Với {a^2+3c^2=28, 2a^2=2 mà ⇒{a=1c=3Vậy a=1,b=2,c=3,d=0

Bình luận (0)
HP
16 tháng 1 2021 lúc 21:12

Từ giả thiết suy ra \(3\left(a^2+b^2+c^2+d^2\right)-d^2=42\)

\(\Leftrightarrow3Q-d^2=42\)

\(\Rightarrow Q=\dfrac{42+d^2}{3}\ge\dfrac{42}{3}=14\)

\(\Rightarrow minQ=14\Leftrightarrow\left\{{}\begin{matrix}d=0\\a^2+2b^2+3c^2=36\left(1\right)\\2a^2+b^2=6\left(2\right)\end{matrix}\right.\)

Từ \(\left(2\right)\Rightarrow b^2⋮2\Rightarrow b⋮2\)

Vì \(b^2=6-2a^2\le6\Rightarrow0\le b\le\sqrt{6}\Rightarrow b\in\left\{0;2\right\}\)

TH1: \(b=0\) ta được \(\left\{{}\begin{matrix}a^2+3c^2=36\\2a^2=6\end{matrix}\right.\Rightarrow a=\sqrt{3}\left(l\right)\)

TH2: \(b=2\) ta được \(\left\{{}\begin{matrix}a^2+3c^2=28\\2a^2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=3\\a=1\end{matrix}\right.\)

Vậy \(minQ=14\Leftrightarrow\left(a;b;c;d\right)=\left(1;2;3;0\right)\)

Bình luận (1)

Các câu hỏi tương tự
KR
Xem chi tiết
KR
Xem chi tiết
H24
Xem chi tiết
VT
Xem chi tiết
LH
Xem chi tiết
CL
Xem chi tiết
LH
Xem chi tiết
H24
Xem chi tiết
CL
Xem chi tiết