Cho các số thực dương x, y, z thoả mãn: \(x+y+z=3\). Chứng minh rằng: \(\dfrac{2x^2+y^2+z^2}{4-yz}+\dfrac{2y^2+z^2+x^2}{4-zx}+\dfrac{2z^2+x^2+y^2}{4-xy}\ge4xyz\)
Bài 1. Chứng minh rằng với mọi x và y ta luôn có: \(\sqrt{\dfrac{x^2+4y^2}{2}}+\sqrt{\dfrac{x^2+2xy+4y^2}{3}}\ge x+2y\)
Bài 2. Cho x, y, z là các số thực tuỳ ý. Chứng minh rằng:
\(\sqrt{x^2+xy+y^2}\sqrt{y^2+yz+z^2}\sqrt{z^2+zx+x^2}\ge\sqrt{3}\left(x+y+z\right)\)
Bài 3. Cho x, y, z là các số thực dương thoả mãn x+y+z=1. Tìm giá trị nhỏ nhất của biểu thức: \(P=\sqrt{2x^2+xy+2y^2}\sqrt{2y^2+yz+2z^2}\sqrt{2z^2+zx+2x^2}\)
Bài 3. Cho x, y, z là các số thực không âm thoả mãn x+y+z=3. Tìm giá trị nhỏ nhất của biểu thức: \(A=\sqrt{2x^2+3xy+2y^2}\sqrt{2y^2+3yz+2z^2}\sqrt{2z^2+3zx+2x^2}\)
cho các số thực x,y,z thoả mãn x+y+z≥6.
Tìm minP=\(\dfrac{x^2}{yz+\sqrt{1+x^3}}+\dfrac{y^2}{xz+\sqrt{1+y^3}}+\dfrac{z^2}{xy+\sqrt{1+z^3}}\)
Cho mng tham khảo ạ
Cho các số dương x;y;z thỏa mãn : \(x+y+z=3\) . CMR :
\(\dfrac{2x^2+y^2+z^2}{4-yz}+\dfrac{2y^2+z^2+x^2}{4-zx}+\dfrac{2z^2+x^2+y^2}{4-xy}\ge4xyz\)
Cho x, y, z > 0 và x + y + z = 1. Chứng minh rằng: \(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+zx+2x^2}\ge\sqrt{5}\)
1. Cho x,y,z > 0. Chứng minh
\(\sqrt{x^2+xy+2y^2}+\sqrt{y^2+yz+2z^2}+\sqrt{z^2+zx+2x^2}\ge2\left(x+y+z\right)\)
Cho x, y, z là ba số thực dương thỏa mãn \(xy+yz+xz\le3xyz\). Tìm GTLN của biểu thức :
\(P=\frac{1}{\sqrt{2x^2+xy+y^2}}+\frac{1}{\sqrt{2y^2+yz+z^2}}+\frac{1}{\sqrt{2z^2+zx+x^2}}\)
Cho x,y,z là các số thực dương thoả mãn x2-y2+z2=xy+3yz+zx
Tìm Max P=\(\dfrac{x}{(2y+z)^{2}}+\dfrac{1}{xy(y+2z)}\)
cho các số thực dương x,y,z thỏa mãn \(\sqrt{x}+\sqrt{y}+\sqrt{z}=1\) chứng minh \(\sqrt{\frac{xy}{x+y+2z}}+\sqrt{\frac{yz}{y+z+2x}}+\sqrt{\frac{zx}{z+x+2y}}\le\frac{1}{2}\)