Violympic toán 8

TS

Cho 3 số thực dương a;b;c. Chứng minh :

\(1+\dfrac{3}{ab+bc+ca}\ge\dfrac{6}{a+b+c}\)

AH
8 tháng 12 2017 lúc 22:57

Lời giải:

Áp dụng BĐT AM-GM ta có hệ quả quen thuộc sau:

\(a^2+b^2+c^2\geq ab+bc+ac\)

\(\Leftrightarrow (a+b+c)^2\geq 3(ab+bc+ac)\)

\(\Leftrightarrow \frac{(a+b+c)^2}{3}\geq ab+bc+ac\Rightarrow \frac{3}{ab+bc+ac}\geq \frac{3}{\frac{(a+b+c)^2}{3}}=\frac{9}{(a+b+c)^2}\)

Do đó:

\(1+\frac{3}{ab+bc+ac}\geq 1+\frac{9}{(a+b+c)^2}\) (1)

Ta sẽ đi chứng minh \(1+\frac{9}{(a+b+c)^2}\geq \frac{6}{a+b+c}\) (2)

\(\Leftrightarrow \left(\frac{3}{a+b+c}-1\right)^2\geq 0\) (đúng)

Từ (1),(2) suy ra \(1+\frac{3}{ab+bc+ac}\geq \frac{6}{a+b+c}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=1\)

Bình luận (0)

Các câu hỏi tương tự
TS
Xem chi tiết
TS
Xem chi tiết
LQ
Xem chi tiết
LS
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NC
Xem chi tiết
NL
Xem chi tiết
TS
Xem chi tiết