Violympic toán 8

NA

Cho 3 số nguyên a, b, c thỏa mãn: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{abc}\)
Chứng minh rằng: \(A=\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\)là số chính phương

NL
30 tháng 11 2018 lúc 22:59

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{abc}\Rightarrow ab+bc+ac=1\)

Ta có \(1+a^2=a^2+ab+bc+ac=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)

Tương tự ta được \(1+b^2=\left(a+b\right)\left(b+c\right)\); \(1+c^2=\left(a+c\right)\left(b+c\right)\)

\(\Rightarrow A=\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)\)

\(\Rightarrow A=\left[\left(a+b\right)\left(a+c\right)\left(b+c\right)\right]^2\) \(\Rightarrow A\) là số chính phương

Bình luận (0)

Các câu hỏi tương tự
KH
Xem chi tiết
H24
Xem chi tiết
PA
Xem chi tiết
BB
Xem chi tiết
MS
Xem chi tiết
LT
Xem chi tiết
NB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết