Violympic toán 9

RP

Cho 3 số dương a,b,c thỏa mãn \(ab+bc+ca=3abc\) .Tìm giá trị lớn nhất của biểu thức

\(F=\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+b+2c}\)

H24
4 tháng 3 2019 lúc 12:31

Áp dụng BĐT Svarxơ:

\(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}\)\(=\dfrac{1}{a}+\dfrac{4}{2b}+\dfrac{9}{3c}\ge\dfrac{\left(1+2+3\right)^2}{a+2b+3c}\)\(=\dfrac{36}{a+2b+3c}\)

CMTT: \(\dfrac{2}{a}+\dfrac{3}{b}+\dfrac{1}{c}\ge\dfrac{36}{2a+3b+c}\)

\(\dfrac{3}{a}+\dfrac{1}{b}+\dfrac{2}{c}\ge\dfrac{36}{3a+b+2c}\)

Cộng vế theo vế, ta có: \(6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge36\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=36F\)

Có: \(ab+bc+ca=3abc\)

Vì a,b,c>0 nên chia cả 2 vế cho abc:

\(\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{b}=3\)

\(\Rightarrow36F\le18\Leftrightarrow F\le\dfrac{1}{2}\)

Vậy Fmin\(=\dfrac{1}{2}\Leftrightarrow a=b=c=1\)

Bình luận (0)
KB
4 tháng 3 2019 lúc 12:21

Có trong câu hỏi tt nha

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
AR
Xem chi tiết
PM
Xem chi tiết
AS
Xem chi tiết
VF
Xem chi tiết
TD
Xem chi tiết
VH
Xem chi tiết
NH
Xem chi tiết
BL
Xem chi tiết